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Abstract. Prüfer's coding scheme yields a classic proof of Cayley's formula: using n distinct labels, the number of free-
labeled trees on n vertices equals n 

n – 2. We introduce an analogous result: using labels of shortest length n – 1, the 
number of Hamming-labeled trees on n vertices equals 2 

n – 1
 n 

n – 3. These shortest labels have least radix 2 and maximum 
weight 1. Imposing the proviso that each tree contain some fixed but arbitrary label, we further show that the number of 
such Hamming labelings reduces to the number n 

n – 2 of free-labeled trees. As a warmup, we enumerate the free labelings 
of hypermeshes and hypercubes metrized on the Lee, Manhattan, and Hamming distances, and compare with the count of 
Hamming labelings in each case. We sample pertinent applications, related work, key algorithms, and open problems. 
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1. LABELS, LABELINGS, AND HAMMING GRAPHS 

1.1 Basic Vocabulary 

Tables 1, 2, 3, and 5 index definitions and notation. For the 
sake of exposition, we elaborate certain of these in the text. 

Consider the complete set L j of all labels on d ordered digits 
radix j. For L j or any of its nonempty subsets λ, the qth digit 
takes its value from jq ≥ 2 symbols. Each of jq symbols 
appears in the q 

th digit of at least one label of λ ; i.e., λ is not 
padded. Without loss of generality, we deem digit q as 
taking on integer values from 0 to jq – 1. Integer jq is the 
extent of digit q. The ordered d-tuple j = ( jd – 1, … , j0 ) of 
extents is the mesh (or mixed ) radix vector of L j. 

Unless specified otherwise, our radices are extent-majorized. 
For extent positions q and i in j, that is, q ≥ i implies jq ≥ ji. 
The position of a label digit is the same as that of its extent. 
For reasons we illuminate in Section 1.2, the maximum 
extent jd – 1 of j is the cube radix of L j. The radix is j-ary, or 
uniform, if all the extents of j equal j; we may emphasize 
this fact by replacing vector j with the scalar extent j. 

The (unweighted) Hamming distance | x, y| H equals the 
number of digits where the d-digit labels x and y differ. In 
Section 3.2 we touch on weighted Hamming distances. The 
edge distance | x, y| G equals the minimum pathlength between 
vertices labeled x and y in a connected graph. 

Graph G is Hamming-labeled if the edge distance between 
every two vertices equals the Hamming distance between the 
respective labels: | x, y| G = | x, y| H , for all x, y ∈ V(G). A graph 
is Hamming if it can be Hamming-labeled. Unless specified 
otherwise, our labelings have minimum dimension, and their 
majorized radices are extent- or cube-minimum. The 
minimum Hamming dimension (dimension, for short) of 
graph G is the fewest number d of digits that suffice to 
Hamming-label G , using some (unpadded) subset λ ⊆ L j of 
the complete set of d-digit labels, for some radix j. 

Suppose that graph G is Hamming-labeled with majorized 
radix j and dimension d. Vector j is extent-minimum if, for 
any other majorized d-tuple ϕ that Hamming-labels G, 
jq ≤ ϕq, for integers 0 ≤ q < d. Vector j is cube-minimum if it 
minimizes the cube radix jd – 1. If the labeling is j-ary 
uniform then extent and cube minima are equivalent. 

While many graphs are Hamming, many are not. So, and as 
a function of the order n, just how many Hamming-labeled 
graphs are there? Alas, and as summarized in Table 8, this 
question falls among those to which sharp answers remain 
an open challenge. However, we can (and do) explicate the 
number of Hamming-labeled trees. Table 6 and Table 7 
catalog the contributions served up by this paper. 
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| x, y| G Edge distance, a.k.a. graph distance: minimum pathlength between vertices x and y. page 1 

| x, y| H Hamming distance: the number of digits where d-digit labels x and y differ. 1 

| x, y| L Lee, a.k.a. modulo, a.k.a. cyclic distance: )(
0

,min qqq
dq

qq yxjyx −−−∑
<≤

 4, 8 

| x, y| M Manhattan, a.k.a. city-block distance: ∑
<≤

−
dq

qq yx
0

 4, 10 

connected graph G Graph G is connected if there is a path between every two vertices of G. 1 

cube-minimum radix Mesh radix vector j is cube-minimum if it minimizes the cube radix jd – 1. 1 

cube radix Maximum extent jd – 1 in majorized radix vector j of dimension d. 1 

cycle; Cq A path of length q – 1 ≥ 2, together with an edge joining the endpoints of the path. 2 

digit Positionally distinct variable in a set of labels. If the extent of the q 
th digit is jq , 

then the q 
th digit assumes any of jq integer values from 0 to jq – 1 inclusive. 1 

extent of a digit The number of symbols that a digit can take on as its value. 1 

extent-minimum radix Minimizes all the extents over all majorized radices that Hamming-label a graph. 1 

G(E, V); V(G); E(G) (Simple, undirected) graph G comprising edges E that prescribe the 
image of a symmetric irreflexive relation on a finite set V of vertices. 1 

(minimum) dimension Fewest digits sufficient to Hamming-label (or, generally, metrize) a graph. 1 

Hamming graph A graph is Hamming if it can be Hamming-labeled. 1 

Hamming labeling Graph G is Hamming-labeled if the edge distance between every two vertices equals 
the Hamming distance between the respective labels: | x, y| G = | x, y| H , ∀ x, y ∈ V(G). 1 

j-ary; j-ary radix Labeling with respect to vector radix j; uniform in scalar extent j: j = ( j, … , j ). 1 

j 
d Shorthand for ∏

<≤ dq
qj

0

. Equal to | V(K j ) | and | L j |. Reduces to j 
d in the j-ary case. 4 

K-cube; K j 
d Clique-based hypercube; complete j-ary d-dimensional Hamming graph. For d = 1 

we may write K j for a clique, a.k.a. hyperedge, a.k.a. complete graph of order j. 4, 4 

K-mesh; K j Clique-based hypermesh; complete Hamming graph radix j. 4 

label x Ordered tuple of digit values, the q 
th of which we denote xq. 1 

L j ; L j 
d

 ; λ Unpadded set L j  of labels radix j resp. j-ary radix dimension d ; λ is a subset of L 1, 1 

majorized (Radix) vector j is majorized if d > q ≥ i ≥ 0 implies jq ∈ j ≥ ji ∈ j . 1 

order Vertex cardinality. If the vertex set of a graph is V, we write its order as n = | V |. 4 

path; P(x … z) A single endpoint vertex x = P( x … x ); else union P( x … z ) of path P( x … y ) with 
edge ( y, z ), such that y and z ∉ P( x … y ) are endpoints of P( x … y ) resp. P( x … z ). 2 

pathlength Size of a path. 2 

(mixed) mesh radix j Majorized vector j = ( jd – 1, … , j0 ); jq is the extent of digit q; d is the dimension. 1 

size Edge cardinality. If the edge set of a graph is E, we write its size as | E |. 2 

subgraph of G Any subset of the edges of G, unioned with any subset of the vertices of G.  5 

tree Connected graph with minimum size. Equivalently, a cycle-free connected graph. 1 

| X |; | x | Cardinality, or number of elements in the set X. Absolute value of real number x. 2, 2 

Table 1: Nomenclature and notation introduced, directly or indirectly, through the first part of Section 1.2. Also see most 
any textbook on graphs; e.g., [Bollobás 1998], [Chartrand and Lesniak 1986]. Also see Tables 2, 3, and 5. 
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Figure 1: Dimension, radix, and labelings of cubes and meshes. Deleting the green edges from the cycle-based 
constructions on the left yields a path, or path-based cube or mesh, whose intrinsic distance is Manhattan. 
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Figure 2: Graphs induced from the 3-dimensional Hamming-labeled binary cube: invariant versus dimension-increasing radix. 
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1.2 K-Meshes and K-Cubes are Hamming Ideals 

To count the number of Hamming graphs, it pays to know 
something about them. Table 4 chronicles a selection of key 
properties and results. For the sake of exposition, we 
elaborate certain of these in the text. For example, what does 
the anatomical blueprint of Hamming graphs look like? 

To answer this question, first consider the complete 
Hamming-labeled graph radix j, also known as a clique-
based hypermesh K j, or K-mesh. To construct K j, attach a 
vertex to each element in the complete set L j  of all labels 
whose mesh radix is j ; join two vertices with an edge if and 
only if the Hamming distance between their labels equals 
one. The number | L j | of such labels equals 

 d

dq
qj jdef

0
=∏

<≤

 (1) 

… whence (1) also expresses | V(K j ) |, the order of K j . The 
shorthand on the righthand side will prove quite convenient. 

If L is j-ary then the uniform K-mesh so constructed 
specializes to a clique-based hypercube, K j 

d, a.k.a. j-ary K-
cube of dimension d. In this case (1) reduces to 

 j 
d = | V(K j 

d) | = | L j 
d | (2) 

Equivalently, and as illustrated in Figure 1, we can 
Hamming-label K-meshes (hence K-cubes) by induction on 
the dimension. The basis at d = 0 is an unlabeled vertex. At 
d = 1 we have a clique, or complete graph, of order j0 and 
size ½ ( j0

2– j0); i.e.; a j0-hyperedge. To get a K-mesh of 
radix ( jd – 1, … , j0 ), Hamming-label jd – 1 copies of a K-mesh 
whose radix is ( jd – 2, … , j0 ). For integer values of q ranging 
from 0 to ( jd – 1 – 1), prepend each label on the qth copy with 
q ; join two vertices if and only if they are in different copies 
and their labels are identical in digits 0 through d – 2. 

If the extent of each digit equals 2 then we have the familiar 
binary hypercube [Armstrong and Gray 1981]; e.g., Figure 
2. If any Hamming extent exceeds three, however, then 
clique-based meshes and cubes differ from cycle-based C-
meshes C j and C-cubes C j 

d popularized by the application-
oriented literature [Bose et al 1995], [LaForge et al 2003]. 

The preceding algorithm correctly constructs a complete 
Hamming-labeled K-mesh or K-cube, regardless of the order 
by which we pivot on the digits ([LaForge 2004] p. 4). It 
generalizes to procedures that generate meshes and cubes 
from other bases, such as paths and cycles (see Figure 1). Of 
interest are the corresponding intrinsic distances; e.g., the 
Manhattan distance, for path-based P-meshes P j and P-cubes 
P j 

d, and the Lee or modulo distance, in the case of cycle-
based C-meshes and C-cubes ([LaForge et al 2003] Thm 9). 
With respect to any such distance, what graphs are 
homomorphically metrizable on the set L j of labels radix j ? 

More precisely, graph G is φ -metrizable with respect to 
metric space λ on the distance function | ·, · | ∆ if there exists a 
one-to-one mapping φ, or metrized labeling, between V(G) 
and λ, such that | x, y| G = | φ (x), φ (y) | ∆   for all φ-labeled 
vertices x, y ∈ V. When is there such a metrization φ ? How 
many metrizations φ and inverse metrizations φ−1 are there? 
Though independent, these notions are similar to many of 
those considered by [Graham and Winkler 1985]. 

For the particular case of Hamming labelings, | ·, · | ∆ = | ·, · | H , 
and λ is a subset of the complete set L j of labels radix j, or, 
in the j-ary uniform case, a subset of the complete set of 
d-dimensional j-ary labels. Without loss of generality, and 
for reasons set forth below, we stipulate that L j is the 
smallest such complete set containing λ. 

To see that λ ⊆ L j is a metric space, note that K j 
isomorphically preserves Hamming distance, that the edge 
distance on any connected graph induces a metric space 
([Chartrand and Lesniak 1986] Chap. 2), and that K j is 
connected. Check that | ·, · | H on λ satisfies the requisite 
conditions for a metric space. For all x, y, z ∈ λ, that is: 
i) | x, y| H ≥ 0; ii) | x, y| H = | y, x| H ; iii) | x, y| H = 0 if and only if 
x = y; iv) | x, z| H ≤ | x, y| H + | y, z| H. The latter follows by our 
L j ↔ K j isomorphism, notwithstanding any jumps out of, 
and back into, the image of λ. 

Any λ ⊆ L j has one or zero Hamming metrizations. The 
Hamming distance maps λ into a unique graph G, such that 
each component of G is Hamming-labeled by one of the 
Gray-code-transitive blocks that partition λ (Table 4.a); λ is 
Hamming graphic if and only if there is but one such block. 
[LaForge 2004] introduces Algorithm A Construct-Hamming , an 
O(d |λ| 2 ) running-time procedure for determining if λ is 
Hamming graphic. Since the input size is Ω ( d ⋅ | λ | 

 ), this 
leaves us with the open challenge of bridging the Θ( |λ| ) 
multiplicative gap between problem lower bound and 
algorithmic upper bound. (Cf. open problems, Table 8.h, i.) 

It is somewhat more formidable to characterize metrization 
in the forward direction: for given unlabeled graph G, what 
λ, if any, Hamming-labels G , and how? To this end, our 
own recent discoveries about Hamming graphs come in 
handy. K-meshes are Hamming ideals in the sense that every 
Hamming-labeled graph radix j is induced by successively 
deleting vertices from K j  (Table 4.b). Such a sequence of 
induced graphs is radix-invariant, invariant for short (see 
Figure 2). In other words, if G is Hamming, then it has one 
and only one mesh ideal K j . This K-mesh is the complete 
Hamming graph, of minimum dimension and extent, that 
contains G. In terms of order and size, therefore, K j  is the 
smallest K-mesh that invariantly induces G, and L j  is the 
smallest complete set of labels whose elements Hamming-
label G. These results specialize to K-cubes as Hamming 
ideals on a cube radix. (Cf. research avenue, Table 8.b.) 
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⎡ x ⎤ Ceiling, or least integer not less than the real number x. page 7 

O(g(x)) Set of functions no greater than c1⋅g(x), for constants c1, x1 and all x > x1 4 

Θ(g(x)) Exact order of magnitude: intersection of O(g(x)) and Ω(g(x)) 4 

Ω(g(x)) Set of functions no less than c2⋅g(x), for constants c2, x2 and all x > x2 4 

C-cube; C j 
d Cycle-based hypercube; complete j-ary d-dimensional graph on the Lee distance. 

Basis at d = 1 is a the cycle C j . 4, 8 

C-mesh; C j Cycle-based hypermesh; complete graph on the radix j Lee distance. 4, 8 

component of graph G Maximal connected subgraph Q of G; there is no edge between Q and G \ Q. 4 

cover of set S Set of sets whose union contains S; the cover is exact if the union equals S. 5 

EDJ sets Sets are (pairwise) edge-disjoint: if no (two) sets share a common edge. 7 

Gray-code adjacent Labels x ≠ y are Gray-code adjacent if | x, y| H = 1, else Gray-code nonadjacent. 6 

Gray-code transitive 
set of labels 

The set { x } comprising label x is Gray-code transitive. If y is Gray-code adjacent to 
some element of a Gray-code transitive set λ then λ ∪ { y } is Gray-code transitive. 4 

edge-induced A subgraph Q of G is edge-induced if Q spans G. 5 

factorization E of 
graph G; weak; 

partial; incomplete; 
primality; prime 

Partition E = {E0, … Ed – 1} of E(G) such that each factor Eq spans V(G). If Eq need 
not span V(G), then Eq is a weak factor of G, and E is a weak factorization of G. If E 
need not cover G, then the matching E is a partial, a.k.a. incomplete factorization of 
G. The primality of E is the number | E | of factors. If | E | is minimum then E is prime. 

7,
7,
7 

Hamming graphic Label set λ is Hamming graphic if the Hamming graph that metrizes λ is connected. 4 

hyperseparator, 
hyperedge q-separator 

Subset H of the hyperedges (which may be edges) of a connected graph G whose 
removal from G edge-induces q > 1 components. We don’t remove vertex x in the 
edge-induced subgraph, even if all of x’s neighbors belong to a hyperedge in H. 

7 

independent sets Set of pairwise disjoint sets: the intersection of every two sets is empty. Vertices with 
no edges in common (i.e., edge-complementary to a clique) exemplify independence. 5 

induced subgraph of G Subgraph obtained by deleting vertices of G (along with all edges impinging on them) 4 

matching of set S An independent packing of S. 5 

metric space (S, ∆) Set S with real-valued distance | ·, · | ∆  such that, for all x, y, z ∈ S: i) | x, y| ∆ ≥ 0; 
ii) | x, y| ∆ = | y, x| ∆ ; iii) | x, y| ∆ = 0 if and only if x = y; iv) | x, z| ∆ ≤ | x, y| ∆ + | y, z| ∆. 4 

metrization φ; 
metrized labeling; 

inverse metrization φ−1 

One-to-one mapping φ, or labeling, between the vertices of graph G and the metric 
space of labels λ on distance | ·, · | ∆ , such that | x, y| G = | φ (x), φ (y) | ∆  for all φ-labeled 
vertices x, y ∈ V. The inverse φ−1 isomorphically maps labels to graphs. 

4 

packing of set S Set of sets whose union is contained in S ; complete if the union equals S. 5 

partition of set S Complete matching of S. The independent sets in the matching are called blocks. 5 

pivot (verb) To remove a digit or hyperedge factor, thus reducing the dimension of an instance. 4 

P-cube; P j 
d Path-based hypercube; complete j-ary d-dimensional graph on the Manhattan 

distance. Basis at d = 1 is the path P j . 4, 10 

P-mesh; P j Path-based hypermesh; complete graph on the radix j Manhattan distance. 4, 10 

radix invariant graph 
with K-mesh ideal K j  

Element of a sequence of induced subgraphs of K j , each containing its successor,
and each of which remains Hamming-labeled on the identical mesh radix j as K j . 4 

cube-monotone graph 
with K-cube ideal K j 

d 
Element of a sequence of induced subgraphs of K j 

d, each containing its successor, 
each with cube radix j, and each of whose mesh radix is no less than its successor's 4 

spanning graph of G Set of edges that covers the vertices of graph G. Such a set of edges is said to span G. 5 

Table 2: Nomenclature and notation introduced, directly or indirectly, beginning with the latter part of Section 1.2. 
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Figure 3: Prime factorization of K (5, 3), the K-mesh of Figure 1, illustrating the anatomical blueprint of Table 4.d. 
Each of d = 2 factors is a matching of hyperedges that separate Gray-code adjacent vertices. 
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Figure 4: Prime factorization of an 11-vertex radix-invariant subgraph of the 15-vertex K-mesh K (5, 3) of Figure 1. By the 
anatomical blueprint of Table 4.d, the ideal factorization shown in Figure 3 is weakly preserved. The practical upshot: 

an efficient algorithm, A Label-Hamming , that correctly Hamming-labels any graph, or declares it not Hamming. 
Screenshots shown here illustrate A Label-Hamming as implemented in The Right Stuff of Tahoe's Connection Foundry software. 
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1.3 Hamming Graphs Factorize as Hyperseparators 

Picking up where Section 1.2 left off, let us dissect 
Hamming graphs in a bit more detail. Hamming graph G is 
necessarily induced from its K-mesh ideal, in a radix-
invariant fashion. Conversely, an invariantly-induced graph 
preserves the Hamming metrization of its ideal (Table 4.b), 
so this condition is also sufficient for G to be Hamming. 

The recursive definition set forth in Section 1.2 tells us that 
growing a (d – 1)-dimensional K-mesh to dimension d 
introduces exactly j d – 1 hyperedges, each of which spans 
exactly jd – 1 vertices. These j d – 1 hyperedges are edge-
disjoint (EDJ). As Figure 3 illustrates, they separate jd – 1 
copies of the underlying (d – 1)-dimensional K-mesh in a 
strong, pairwise fashion. Each K-mesh edge belongs to one 
such hyperedge. Therefore, a K-mesh factorizes into 
separators, with each factor itself a matching of hyperedges. 
The factorization has minimum cardinality d, hence is prime. 

As a complement to (1), we have the Hamming ideal size: 

 | E(K j ) | = ½ d ( j d – 1) j d  ;   | E(K j 
d) | = ½ d ( j – 1) j 

d (3) 

… where we have applied the result and statistics-flavored 
notation of Table 4.c. We may drop the subscript on j d when 
the averaging range is clear. Summing over all j d degrees 
d ( j d – 1), the factor ½ adjusts for our having counted each 
edge twice. Because the integer d ( j d – 1) j d is even, we can 
omit the ceiling, or least-integer-not-less-than function ⎡ · ⎤ , 
from (3). To wit: either some factor of j d is even, or all of 
the factors of j d are odd; in the latter case all summands of 
d ( j d – 1) are even. 

Table 4.d strengthens the preceding from K-meshes to all 
Hamming graphs G. As Figure 4 exemplifies, any radix-
invariant sequence of induced graphs preserves the 
hyperseparator prime factorization of its K-mesh ideal. 
Radix-invariant deletion permits all but one of the 
jq -hyperedges corresponding to digit q to be eroded. Unlike 
the K-mesh ideal, each hyperseparator matching need not 
span G, and the factorization is weak. Since the radix is 
invariant, however, there must remain at least one such 
jq -hyperedge. This result yields Algorithm A Label-Hamming, 
illustrated by Figures 4 and 8, and discussed in Section 3.3. 

Analogous hyperfactorization carries over in the case of 
K-cubes. G has Hamming dimension d and cube radix j if 
and only if G is induced from its j-ary d-dimensional K-cube 
ideal K j 

d in a cube-monotone (as opposed to radix-invariant) 
fashion. To expound on Figure 2, cube-monotone deletion 
of vertices never increases the extent, and the cube radix 
remains constant at j. The low-order extents in the radix 
vector can (and generally will) decrease to match the mesh 
radix of G. One consequence of this (Table 4.f) is that the 
cube radix of a Hamming graph equals its clique number. 

2. BINARY HAMMING GRAPHS 

Hamming labelings radix 2 are necessarily extent-minimum, 
and render majorization moot. For certain binary Hamming 
graphs, moreover, the relation between the order n and the 
minimum Hamming dimension d is well-understood. For 
example, even cycles n = 2d are binary Hamming, and have 
minimum dimension d (Table 4.l); n-vertex trees are binary 
Hamming with minimum dimension n – 1, a result which 
specializes to paths (Table 4.m; also Lemma 2 herein). 

Attractive facts such as these spur the chief combinatorial 
contributions of this paper. Table 6 summarizes formulae we 
derive for the number of Hamming-labeled C-meshes 
(including cycles and C-cubes); the number of Hamming-
labeled P-meshes (including paths and P-cubes); and, as 
advertised in the title, the number of Hamming-labeled trees. 

2.1 Labelings: Distinct, Free, and Metrized 

Labeled graphs G and Q are the same, or identical, if their 
vertices and edges are equal: V(G) = V(Q) and E(G) = E(Q). 
Otherwise, G and Q are distinct. By the number of labeled 
graphs, we mean the maximum cardinality of a set of 
(pairwise) distinct labeled graphs. Section 2.4 revisits graph 
representation from a computational viewpoint. 

The challenge of finding an expression for the number of 
labeled graphs with given properties is of longstanding 
interest. In its classic version, we parameterize the order n, 
and seek to enumerate graphs whose vertex labels are a set 
of n successive integers. Without loss of generality we take 
that set as L n 

1
 , i.e., the integers from 0 to n – 1 inclusive. 

Here there is no a priori requirement for metrization, and we 
christen such a labeling as free. 

Let Φ(G ) denote the set of free labelings of a set G of 
graphs; write Φ(G )∆ for the shortest labelings of G, metrized 
on distance | ·, · | ∆. It is interesting to contrast the cardinality 
of free labelings with that of their metrized counterparts. 

For example, suppose that G is the n-cycle Cn . Then 

 For n ≥ 3:  | Φ(Cn ) | = ½ ( n – 1)! (4) 

To see this, assign the label 0 to an arbitrary vertex. Choose 
either of two neighboring vertices of 0, and assign it any of 
the n – 1 remaining labels. Continue in this direction, now 
determined, with n – q choices for labeling the qth vertex, 
0 < q < n. The result (4) follows by the product rule of 
counting ([Comtet 1974] pp. 4, 231), and by noting that we 
have counted each labeling twice. By contrast: 

Theorem 1 . | Φ(Cn )H | = 1 for n = 3 
   = 0 for odd n ≥ 5  
  = ½ ( d ! ) = ½ ( [ n / 2 ]!) for n = 2d ≥ 4 (5) 
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Proof. C3 = K3, whence there is but a single one-dimensional 
Hamming labeling radix three. Otherwise, n ≥ 4, and the 
requirement that the order n of the cycle be even follows 
from Table 4.k or, albeit less directly, from Table 4.e. 

It remains to consider even n = 2d ≥ 4. By the result of 
Table 4.l, not only is C2d binary Hamming on fewest bits d, 
but any d-bit Hamming labeling of C2d is determined by any 
d successive vertices: vertex x corresponds to its ones-
complement antipode x, at diametric distance d, halfway 
around the cycle. By dimension-minimality, 0, the label with 
all d bits clear, must appear, as must its antipode, the label 1 
with each bit set. The label on a vertex at distance q from 0 
has q bits set. Drawing from the theory of codes, q is the 
weight of the vertex ([MacWilliams and Sloane 1998] p. 8). 

Assign the label 0 to any vertex. Both of 0's neighbors must 
have weight one. There are ½ (d  2 – d ) ways to accomplish 
this, leaving d – 2 bits clear in the partial labeling so far. 
The two interior-disjoint (IDJ) paths between 0 and 1 are 
directional and distinguishable, say, as high, for the path 
whose label on the neighbor of 0 has a bit set in a higher 
order position than that of the other, low path. If d = 2 then 
we are done: the number of binary Hamming labelings of C4 
equals one, which is the exact value of (5). If d = 3 then we 
are done as well: the number of binary Hamming labelings 
of a C6 equals three, again the exact value of (5). 

Otherwise, d ≥ 4; let q = 2 and proceed as follows. Assign to 
the next unlabeled vertex in the high path the same label as 
its predecessor; then set one of the d – 2 bits which have so 
far remained clear, and increment q. Continue in this 
fashion, assigning a total of d – 1 such labels, not counting 0 
and 1, but including the high and low neighbors of 0 initially 
set with weight one. Alternate between high and low paths, 
assigning to the next unlabeled vertex the same label as its 
predecessor on the same path, then setting a bit which has so 
far remained clear. At the qth assignment there remain 
d – q + 1 clear bits from which to choose. Lest we 
inconsistently overwrite the antipode of a vertex, the last 
assignment occurs at q = d – 1. The result (5) follows by the 
product rule of counting.   

2.2 Labelings of C-Meshes and C-Cubes 

To generalize Theorem 1, let us first specify exactly what 
we mean by a Lee-labeled cycle-based mesh, or C-mesh C j 
with mixed radix j. Assign each label of L j to one of j 

d 
vertices, where d is both the Lee dimension of C j and the 
number of Lee digits in L j. Join with an edge two vertices 
labeled x and y if and only if x and y differ in one digit, say, 
the qth, and the modulo-jq difference between the respective 
values in digit q equals ±1. That is, vertices share an edge if 
and only if they are unit neighbors with respect to the Lee 
distance [Bose et al 1995], [LaForge et al 2003]. 

Equivalently, and as illustrated in Figure 1, we can Lee-label 
C-meshes by induction on the dimension. The basis at d = 0 
is an unlabeled vertex. At d = 1 we have a cycle of order and 
size j0. To get a C-mesh of radix ( jd – 1, … , j0 ), Lee-label 
 jd – 1 copies of a C-mesh whose radix is ( jd – 2, … , j0 ). For 
integer values of q ranging from 0 to ( jd – 1 – 1), prepend 
each label on the qth copy with q . Join two vertices with an 
edge if and only if their labels are adjacent with respect to 
the Lee distance. As with K-meshes, this works correctly 
regardless of the order by which we pivot on the digits. If L 
is j-ary then the extent-uniform C-mesh specializes to a 
cycle-based hypercube, C j 

d, a.k.a. j-ary C-cube of dimension 
d. At j = 2 we have C2 

d = K2 
d. Since C4 

d = K2 
2d, a 4-ary Lee 

digit is equivalent to two bits [LaForge et al 2003]. 

While the orders j 
d of C j and K j are equal (1), the sizes are, 

in general, not equal. Verify and contrast with (3): 

 | E(C j ) | = ½ (2d – b) j 
d,    b = | { binary extents of j } | (6) 

Lemma 1 . C j is binary Hamming if and only if no Lee 
extent is odd, whence C j has minimum Hamming dimension 

  ½ [d j d ], and where j d is as defined in Table 4.c. (7) 

Proof. If some Lee extent equals three then C j contains a 
triangle, in which case some Hamming extent must equal 
three, and C j is not binary Hamming. The requirement that 
any extent greater than three be even follows from Table 4.k 
or, albeit less directly, from Table 4.e. 

Supposing that no Lee extent is odd, we Hamming-label C j 
by induction on the Lee dimension d. For a basis at d = 1 we 
either have an edge whose endpoints are labeled 0 and 1, or 
a cycle of order and size j0. In the latter case we apply 
Theorem 1. Either way, we obtain a binary Hamming 
labeling of minimum dimension ½ [ j0 ] = ½ [d j d ]. To 
Hamming-label a C-mesh with Lee radix ( jd – 1, … , j0 ), 
inductively Hamming-label jd – 1 copies of a C-mesh whose 
Lee radix is ( jd – 2, … , j0 ). For integer values of q ranging 
from 0 to ( jd – 1 – 1), prepend each Hamming label on the qth 
copy with the ½ [ jd – 1 ]-bit Hamming label corresponding to 
Lee label q in the base case, applying Theorem 1 if jd – 1 ≥ 4, 
else assigning complementary bit values if jd – 1 = 2. The 
edge distance between vertices equals the Hamming distance 
between their respective labels. The number of bits equals 
DIAM(C j ); by the result of Table 4.g, the labeling has 
minimum Hamming dimension as given by (7).    

Remark 1. The preceding generalizes to C-meshes whose 
Lee extents are either three or even: ternary extents are 
identically Hamming, and the remaining sub-mesh – with 
even extents only – is binary Hamming per Lemma 1. 

Lemma 1 corrects Theorem 6 of [LaForge et al 2006]. The 
latter should have referred to P-meshes, not to C-meshes. 
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Theorem 2 .  Let C j  be the d-dimensional C-mesh on Lee 
radix j having b binary, t ternary, and f 4-ary extents, and 
such that all other extents are even. With j d as in Table 4.c: 

 | Φ(C j )H | = 1  if b + f = d – t   (8) 

else  = 2b + t + f – d
  [ ½ (d j d – 3t) ]!  (9) 

Proof. At d = 1: if b + t  + f = 1 then we have (8); else (9) 
pertains, and gives equality by (5), Theorem 1. 

For d ≥ 2, and recalling that radices are majorized, the t 
ternary digits of Lee radix j are also the high-order t digits of 
a minimum Hamming labeling of C j . Since labels are not 
padded, these high-order digits prescribe a t-dimensional 
ternary C-cube (equivalently, a ternary K-cube), wherein the 
digits are indistinguishable. Thus, ternary digits contribute a 
factor 1 to the number of Hamming labelings. By Remark 1, 
it suffices to enumerate all [½ (d j d – 3t)]-bit labelings of the 
(d – t)-dimensional sub-mesh of C j whose extents are even. 

As first noted on page 8, C4 
d = K2 

2d, whence we replace any 
4-ary Lee digit with two bits. Analogous to the case with 
ternary digits, the b binary and f 4-ary digits of the Lee radix 
j prescribe a ( b + 2 f )-dimensional binary cube, wherein the 
corresponding b + 2 f  bits are indistinguishable. Any Lee 
digit whose extent is 2 or 4 contributes a factor 1 to the 
number of Hamming labelings, and b + f = d – t  implies (8). 

Otherwise, the remaining d – b – t – f  > 0 Lee digits have 
even extents greater than or equal to six. Dimension-
minimality implies that 0, the label with all ½ (d j d – 3t) bits 
clear, must appear. Invoking Lemma 1, we choose ½ [ jq ] 
bits corresponding to the qth Lee digit, and use Theorem 1 to 
Hamming-label the associated cycle as it emanates from 0. 
The number of ways of choosing these bits times the number 
of Hamming labelings of the cycle is given by the q-indexed 
factors in (10). Cycles so-labeled and emanating from 0 
completely determine all bit values on each vertex of C j. 
Each such labeling is Hamming, hence the number of 
minimum Hamming labelings of C j is given by the product: 

 | Φ(C j )H | = !22
1

]3[
1

12
1

2
1

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛
−

−≤<++

−
∏

j

j

tq
q

qdqftb

qj  (10) 

Expanding and canceling factors, (10) simplifies to (9).   

Remark 2. To count the number of un-majorized minimum 
Hamming labelings of C j, replace t by 0 in (8) and 3t by t in 
(9). Either way, a Hamming labeling of C j need not preserve 
the order of its Lee labeling. For Lee digit values in extent-
majorized positions q and i, that is, q ≥ i implies jq ≥ ji . 
However, binary values in bits p and r of a minimum 
Hamming labeling of C j, and that correspond to Lee-digit 
positions q resp. i, may be such that p < r. 

To illustrate Lemma 1 and Theorem 2: a) the cycle, C-cube, 
and C-mesh of Figure 1 all have an extent equal to five, 
hence there are no Hamming labelings. b) For the three-
dimensional binary hypercube of Figure 2, (8) correctly tells 
us that there is only one Hamming labeling. c) C ( 8, 6, 4) has 
(½) 

2·9! = 90720 Hamming labelings on 9 bits, the fewest 
possible. d) The C-cube C 6 

4 has (½) 
4·12! = 29937600 

Hamming labelings on 12 bits, the fewest possible. 

We round out our comparative mini-study of C-meshes with 
a multi-dimensional extension of (4). 

Theorem 3 .  Let C j  be the d-dimensional C-mesh on 
Lee radix j having b binary extents. Then 

 | Φ(C j ) | = 2⎡b / 2⎤ – d
  ( j d – 1)! (11) 

Proof. By induction on the dimension d, with (4) reducing 
to (11) at d = 1, j0 > 2, b = 0. At d = 1, j0 = 2, b = 1 we have 
an edge; there is only one way to free-label it, so (11) holds.  

Assuming the theorem holds for dimensions through d – 1, 
recursively Lee-label C j  according to the construction on 
page 8. Pivoting on the high-order digit, if jd – 1 = 2 then, by 
majorization, C j  is a binary cube. Since C4 

q = C2 
2q = K2 

2q, 
the case of even d = b reduces to a 4-ary C-mesh with 
dimension ½ [d ], and (11) follows by induction. 

Otherwise, either jd – 1 > 2 or jd – 1 = 2 with d = b odd. C j  is a 
cycle or edge of  jd – 1 (d – 1)-dimensional sub-C-meshes, 
each of which has order j d – 1. Assigning the label 0 to an 
arbitrary vertex distinguishes the 0th such sub-C-mesh, with 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−− −

−

−

−
11

1

1

1
dd

d

d

d

jj

j

j

j
 (12) 

remaining choices for labels therein, and where we have 
invoked the symmetry of the binomial coefficient. If jd – 1 > 2 
then, by induction, there are 2⎡b / 2⎤ – d + 1 ( j d – 1 – 1)! ways of 
free-labeling the 0th such sub-C-mesh. If jd – 1 = 2 then, since 
⎡b / 2⎤ – d = – ⎣ b / 2 ⎦ , there are 2⎡b / 2⎤ – d + 1 ( j d – 1 – 1)! = 
2⎡b / 2⎤ – d + 1 (2 d – 1 – 1)! ways to free-label it. The edges 
imposed by the (recursively defined) C-mesh transitively 
induce a matching between the vertices of the 0th sub-C-
mesh and those of the q 

th sub-C-mesh, 1 ≤ q <  jd – 1, as we 
traverse the cycle or edge with respect to the d 

th digit of j. 
Having labeled the 0th sub-C-mesh, and for any set of labels 
chosen for the q 

th sub-C-mesh, the number of such 
matchings is just the number ( j d – 1)! of one-to-one mappings 
between two sets of cardinality j d – 1. At the q 

th sub-C-mesh, 
we pick j d – 1 labels from the j d  – ( q j d – 1) as-yet unchosen 
labels, leaving j d  – ( q + 1) j d – 1 labels from which to choose 
for the ( q + 1)st sub-C-mesh. If C j is a cycle of sub-C-
meshes, then this decision sequence counts each labeling 
twice. Thus, the number of free labelings of C j is the product 
of these q factors, 0 ≤ q <  jd – 1, divided by two if jd – 1 > 2. 
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Codifying the preceding, | Φ(C j ) | equals (12) times 
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Canceling factors, (12) times (13) simplifies to (11).   

To illustrate: a) (11) pegs the number of free labelings of the 
cycle, C-mesh, and C-cube of Figure 1 at ½ ( 4! ) = 12, 
(½) 

2
 ( 14! ) = 21794572800, and, respectively, (½) 

2
 ( 24! ) = 

155112100433310000000000. b) There are ½ ( 7! ) = 2520 
free labelings of the 3-dimensional binary cube of Figure 2. 
c) The number of free labelings of the ternary cube C 3 

3 
= K3 

3 equals (½) 
3

 ( 26! ) = 50411432640825700000000000. 

To recap Section 2.2, a C-mesh is Hamming if and only if it 
has no odd extent greater than four. If C j is Hamming, then a 
minimum labeling has dimension [½ (d j d – 3t)] + t, where t 
is the number of ternary digits in both the Lee and Hamming 
labels, and the remaining ½ (d j d – 3t) Hamming digits are 
binary. While any C-mesh has but one Lee labeling, a C-
mesh that is Hamming can be Hamming-labeled in many 
ways (9), as long as it has (even) extents at least six. 
Comparing (9) with (11), however, we see that a C-mesh 
which does have Hamming labelings has considerably fewer 
of them than it has free labelings. Curious, but why? 

Since the available labels are less numerous in the free case 
( j  

d ) than for binary Hamming labelings ( ≥ 2½
 
[d

 
j ] ), we 

might anticipate fewer free labelings than Hamming 
labelings. On the other hand, metrization constrains the 
choice of Hamming labels. So which of these opposing 
forces prevails? Do we have more free labelings, or more 
Hamming labelings? With C-meshes the answer is, "More 
free labelings". As Section 2.3 reveals, this trend holds for 
P-meshes as well. Alas, the balance does not always tip this 
way. As we uncover in Section 2.5, Hamming-labeled trees 
are more numerous than free-labeled trees of the same order. 

2.3 Labelings of P-Meshes and P-Cubes 

Theorem 2's enumeration of C-mesh Hamming labelings 
takes but implicit advantage of Hamming ideals and hyper-
factorization, as reviewed in Sections 1.2 and 1.3. To count 
the Hamming labelings of P-meshes, we begin to exploit 
these properties in earnest. 

For the Manhattan-labeled path-based mesh P j, or P-mesh 
with radix j, we assign each label of L j to one of j 

d vertices; 
the dimension d equals the number of digits. Join with an 
edge two vertices labeled x and y if and only if x and y differ 
in one digit, say, the qth, and the arithmetic difference 
between the respective values in digit q equals ±1. That is, 
vertices share an edge if and only if they are unit neighbors 
with respect to the Manhattan distance. 

Equivalently, we can Manhattan-label P-meshes by 
induction on the dimension. The basis at d = 0 is an 
unlabeled vertex. At d = 1 we have a path of order and size 
j0. To get a P-mesh of radix ( jd – 1, … , j0 ), Manhattan-label 
jd – 1 copies of a P-mesh whose radix is ( jd – 2, … , j0 ). For 
integers 0 ≤ q < jd – 1, prepend each label on the qth copy with 
q . Join two vertices with an edge if and only if their labels 
are adjacent with respect to the Manhattan distance. Similar 
to the case with K- and C-meshes, this works correctly 
regardless of the order by which we pivot on the digits. If L 
is j-ary then the extent-uniform P-mesh so constructed 
specializes to a path-based hypercube, P j 

d, a.k.a. j-ary 
P-cube of dimension d. At j = 2 we have P2 

d = K2 
d = C2 

d. 

The orders j 
d of P j, K j and C j are all equal (1). Since the 

vertices of K j and C j are degree-regular at d ( j d – 1) resp. 
(2d – |{ binary extents of j }|), it is straightforward to 
calculate their sizes (3), (6). By contrast, P-meshes are 
irregular. To see just how irregular they are, let b be the 
number of bits in the Manhattan radix j ; denote by J [ q , b ] 
the set of all subsets j [ q , b ] of q extents drawn from the 
subvector ( jd – 1, … , jb ) on the d – b high-order extents; 
write Γ(x) for the adjacency of vertex x. Subject to the 
convention that the summation in (14) equals one if q = 0, 
verify that the number of vertices of P j with degree d + q is: 

|{ x ∈ V(P j ): | Γ(x) | = d + q }|  0 ≤ q ≤ d – b 

 = ∑
∈ ∈

− ∏ −
],[],[ ],[

)2(2
bqbq bqi

qd i
Jj j

 (14) 

To illustrate: a) b = 0 for P( 5, 4, 3) ; it contains 20· 3· 2·1 = 6 
vertices of maximum degree 2d = 6; 21·( 3 ·2 + 3·1 + 2·1) = 22 
vertices of degree 5; 22·( 3 + 2 + 1) = 24 vertices of degree 4; 
and 23· 1 = 8 vertices of minimum degree 3. As a check: 6 + 

22 + 24 + 8 = 60 = 5· 4·3 = j 
d. b) b = 2 for P( 5, 4, 3, 2, 2) ; it 

contains 22· 3· 2·1 = 24 vertices of degree 2d – 2 = 8; 
23· ( 3 ·2 + 3·1 + 2·1) = 88 vertices of degree 7; 24·( 3 + 2 + 1) = 
96 vertices of degree 6; and 25· 1 = 32 vertices of degree 5. 
As a check: 24 + 88 + 96 + 32 = 240 = 5· 4· 3· 2· 2 = j 

d. c) P3 
d 

has 1 vertex of degree 2d, and 3d – 1 of degree less than 2d. 

The rather messy exercise above underscores why, instead 
of attempting to wrangle (14), we derive the P-mesh size by 
appealing to the inductive definition. To avoid subscripted 
subscripts in the radix vector j, we write eP ( jd – 1, … , j0 ) 
and nP ( jd – 1, … , j0 ) in place of | E (P j ) | resp. | V(P j ) |. This 
yields the recurrence 

eP ( jd – 1, … , j0 ) =  jd – 1· eP ( jd – 2, … , j0 ) 
   + ( jd – 1 – 1) · nP ( jd – 2, … , j0 ) (15) 

Invoking (1), replace nP ( jd – 1, … , j0 ) by j 
d. Apply the 

initial condition eP ( j0 )  = j0 – 1; by substitution, verify that 

 eP ( jd – 1, … , j0 ) = ∑
<≤ <≠≤

∏−
dq dqi

jj iq
0 0

)( 1  (16) 
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solves (15) for eP = | E (P j ) |. To illustrate: the P-mesh with 
radix j = ( 5, 4, 3) has 4· 4· 3 + 3 ·5· 3 + 2· 5· 4 = 133 edges. 

For P-cubes on a scalar radix j, the erstwhile daunting 
equation (16) reduces to the refreshingly simple 

 | E(P j 
d) |  = d ( j – 1) j 

d
 
–

 
1 (17) 

Comparing (3), (6) and (17) at identical dimension d and 
scalar radix j, we see that the K-cube's size is j / 2 that of the 
corresponding P-cube, and ( j – 1) / 2 that of a d-dimensional 
non-ternary j-ary C-cube. To illustrate at d = 3 and j = 4: 
the K-cube has ½ (3·3·43) = 288 edges; the P-cube has size 
3·3·42 = 144; while that for the C-cube is 3·43 = 192. 

In contrast with C-meshes, P-meshes are always Hamming: 

Theorem 4 . With Manhattan radix j, and j d as in Table 4.c: 

 P j is binary Hamming with dimension d ( j d – 1) (18) 

  | Φ(P j )H | = 2d
 
( j – 2)

 [d ( j d – 1)]! (19) 

Proof. By induction on the Manhattan dimension d. For a 
basis at d = 1, the results of Table 4.b, g, and m imply that 
the Hamming ideal K2  

j – 1 invariantly induces P j 
 
1, whence 

(18). Thus, the number of ( j – 1)-bit Hamming labelings of 
P j 

 
1 equals the number of diametric geodesics in K2  

j – 1. From 
an arbitrary vertex x of K2  

j – 1 to its ones-complement 
antipode x , there are j – q distance-monotone choices for the 
qth edge. By the product rule of counting, therefore, we have 
( j – 1)! diametric geodesics from any starting vertex. 
Summing over all 2  

j – 1 starting vertices counts each 
diametric geodesic twice. The number 2  

j – 2
 ( j – 1)! of such 

geodesics equals the number (19) of Hamming labelings on 
 j – 1 bits; and  j – 1 is the minimum dimension (18). 

Assuming the theorem to be true for Manhattan dimensions 
1 through d – 1, apply the result of Table 4.d to the 
d-dimensional P j. Each of the jd – 1 – 1 sets of edges that 
(hyper)separate vertices between two (d – 1)-dimensional P-
meshes increments the minimum Hamming dimension; i.e., 
each such pair adds one to the fewest number of bits that 
Hamming-label the P-mesh. Constructively achieve this 
bound by prepending (say) jd – 1 – 1 clear bits to labels on 
jd – 1 copies of the Hamming-labeled (d – 1)-dimensional 
P-mesh. For 1 ≤ q ≤ jd – 1 – 1, set the low-order (say) q – 1 
bits prepended to each label on the qth copy. 

The labeling so produced is Hamming on a number d ( j – 1) 
of bits equal to DIAM(P j ). By the result of Table 4.g, this 
labeling has minimum Hamming dimension (18). 

In contrast with C-cubes, the label 0 with all bits clear need 
not appear in a minimum P-mesh Hamming labeling. 
Therefore, we cannot exactly mirror the counting argument 
at the heart of our proof of Theorem 2. 

In lieu of 0, however, we can start counting at x, one of the 
2d > 0 corner points (14) of P j  with minimum degree d. 
Choose jq – 1 bits corresponding to the qth Manhattan digit, 
and use the base case at d = 1 to Hamming-label the 
associated path as it emanates from x. The number of ways 
of choosing these bits times the number of Hamming 
labelings of the path is given by the q-indexed factors in 
(20). Paths so-labeled and emanating from x completely 
determine all bit values on each vertex of P j. Each such 
labeling is Hamming, hence the number of minimum 
Hamming labelings of P j is given by the product: 

| Φ(P j )H | = )!1(2
1
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Expanding and canceling factors, (20) simplifies to (19).  

To illustrate Theorem 4: a) There are 24·5! = 1920 five-bit 
Hamming labelings of a 6-vertex path. b) P( 5, 4, 3) has 26·9! = 
23224320 Hamming labelings on 9 bits, the fewest possible. 
c) Using the least number 8 of bits, the P-cube P3 

4 can be 
Hamming-labeled in 26·8! = 2580480 different ways. 

We conclude our comparative mini-study of P-meshes with 

Theorem 5 .  Let P j be the d-dimensional P-mesh on 
Manhattan radix j with b binary extents. Then 

 | Φ(P j ) | = ( ½ ) 
⎣

 
b / 2 

⎦ + d
  ( j d )! (21) 

Proof. By induction on the Manhattan dimension d. At 
d = 1, we have a path. Start at either endpoint, moving to the 
other, with j0 – q choices for labeling the qth vertex, 
0 ≤ q < j0. The result (21) follows by the product rule, and 
by noting that we have counted each labeling twice. 

Assuming the theorem holds for dimensions through d – 1, 
recursively Manhattan-label P j  according to the 
construction on page 10. Pivoting on the high-order digit, if 
jd – 1 = 2 then, by majorization, P j  is a binary cube. Since 
P2 

d = C2 
d = K2 

d, the case of d = b reduces to (11), routine 
manipulation of which establishes equality with (21). 

Otherwise, jd – 1 > 2. P j  is a path of  jd – 1 (d – 1)-dimensional 
sub-P-meshes, each of order j d – 1, with ends distinguished 
by vertices having only one neighbor with respect to the  
( d – 1)st digit. Move from one to the other of these end sub-
P-meshes. Similar to the proof of Theorem 3, it follows that 

| Φ(P j ) | =
⎣ ⎦

( )!1
1

1

0

2

)1(2

1

1

−
−

−

<≤

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+−

−∏
−

d
dd

dd

jq

db

q

q

d

j
jj

jj
 (22) 

… by induction, the product rule, and noting that we have 
counted each labeling twice. Expanding and canceling 
factors, (22) simplifies to (21).  
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To illustrate Theorem 5: a) There are ( ½ ) ·6! = 360 free 
labelings of a 6-vertex path. b) P( 5, 4, 3) has ( ½ ) 

3· 60! free 
labelings. c)  P3 

4 can be free-labeled in ( ½ ) 
4·81! ways. 

2.4 Free Labelings of K-meshes 

Table 8.a suggests potential investigations of mesh labeling 
that would expand considerably on Sections 2.2 and 2.3. To 
save stage room for our featured act in Section 2.5, we 
punctuate our comparative mini-study of meshes by 
enumerating the free labelings (23) of Hamming ideals. 

To elucidate the proof of Theorem 6, recall one of the 
standard representations of a graph G : the adjacency matrix 
Γ(G). Entry ( q, r ) of Γ(G) equals one (or is nonempty) if 
( q, r ) is an edge of G ; else entry ( q, r ) equals zero (or is 
empty). Algebraic graph theory has quite a lot to say about 
binary adjacency matrices, especially their eigenvalues 
(cf. Table 4.h; also [Biggs 1996] prob. 21a, p. 169). 
Although adjacency matrices are frequently convenient, 
their Θ( n2 ) storage space is suboptimal when the average 
vertex degree scales sub-linearly in the graph order n 
([Corman et al 1993] p. 467).  

Theorem 6 .  Let K j  be the d-dimensional K-mesh 
on Hamming radix j having b binary extents. Then  

 | Φ(K j ) | = 
⎣ ⎦

∏
<≤

⎟
⎠
⎞

⎜
⎝
⎛

dq
q

db

j
0

2/

)!(
)!(

2
1 j

 (23) 

Proof. By induction on the dimension d. At d = 1 equation 
(23) equals one. To see that this is correct, represent a j-
vertex clique K j 

1 by its binary adjacency matrix Γ( K j 
1

 ), in 
accordance with the definition above. Permuting Γ 's rows or 
columns does not change G's adjacency. Moreover, sorting 
Γ 's n rows and n columns (say, by increasing label) results 
in diagonal entries ( q, q ) equal to zero, with ( q, r ) equal to 
one for off-diagonal entries q ≠ r. Thus, | Φ( K j 

1) | = 1. 

Assuming the theorem holds for dimensions through d – 1, 
recursively Hamming-label K j  according to the construction 
on page 4. Pivoting on the high-order digit, if jd – 1 = 2 then, 
by majorization, K j  is a binary cube. Since P2 

d = C2 
d = K 2 

d, 
the case of d = b reduces to (11), straightforward 
manipulation of which establishes equality with (23). 

Otherwise, jd – 1 > 2, and K j  is a clique of  jd – 1 (d – 1)-
dimensional sub-K-meshes, each of order j d – 1. Similar to 
the decision-sequence argument in the proof of Theorem 3, 
distribute j d – 1 labels into any such sub-K-mesh, the 0th. To 
avoid subscripted subscripts in the explicated radix j, write 
ΦK ( jd – 1, … , j0 ) in place of | Φ (K j ) |. Having labeled the 0th 
sub-K-mesh in one of ΦK ( jd – 2, … , j0 ) ways, the edges 
between it and the q 

th sub-K-mesh prescribe a matching. 

At the q 
th sub-K-mesh, we pick j d – 1 labels from the j d  – 

( q j d – 1) as-yet unchosen labels, leaving j d  – ( q + 1) j d – 1 
labels from which to choose for the ( q + 1)st sub-K-mesh. 
Choosing j d – 1 labels for the q 

th sub-K-mesh induces ( j d – 1)! 
matchings. | Φ (K j ) | is therefore ΦK ( jd – 2, … , j0 ) times 

  
⎣ ⎦

( )!1
1

1

0

2

)1(2

1

1

−
−

−

<≤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+−

−∏
−

d
dd

dd

jq

b

q

q

d

j
jj

jj
 (24) 

… all divided by the number ( j d – 1)! of times that (24) over-
counts labelings. The latter follows by noting that each 
(d – 1)-dimensional sub-K-mesh chosen amounts to a label 
in a one-dimensional clique of order j d – 1. As with the base 
case d = 1, no two orderings are distinguishable. Since (24) 
times ΦK ( jd – 2, … , j0 ) covers all ( j d – 1)! orderings of sub-
K-meshes, we must divide by ( j d – 1)! Contrast this with the 
proofs of Theorem 3 and Theorem 5, where our factor-of-
two adjustment was a consequence of reverse traversals of 
cycles or paths. Divide ( j d – 1)! into the inductive value of 
ΦK ( jd – 2, … , j0 ) and multiply by (24). Canceling like 
factors yields (23).     

To illustrate Theorem 6: a) the K-cube K5 
2 of Figure 1 has 

25! / (5!·5!) = 1077167364120210000000 free labelings. 
b) There are 15! / (5!·3!) = 1816214400 free labelings of the 
K-mesh K( 5, 3) of Figure 1. c) The number of free labelings 
of K( 3, 2, 2) equals ½ [(12! / (3!·2!·2!)] = 9979200, the same 
value given by (11); this is proper since K( 3, 2, 2) = C( 3, 2, 2) . 

2.5 Free vs Hamming Labelings of Trees 

Let Tn be a tree of order n ; write Tn for the set of all Tn . 
Sections 2.2 through 2.4 give expressions for the number of 
labelings – either Hamming or free – of meshes based on 
cycles, paths, and cliques. The structured, d-dimensional 
adjacency of any such mesh is uniquely prescribed by a 
radix of d extents. By contrast, Tn is both simpler and more 
complicated. Simpler, since we have but one parameter: the 
order n. More complicated since, for n ≥ 4, Tn is a set with 
more than one tree. We begin with the free labelings of Tn :  

Theorem 7 . | Φ(Tn ) | = n 
n – 2 [Cayley 1889] (25) 

We then prove the result advertised in the title of this paper: 

Theorem 8 .  | Φ(Tn )H | = 2 
n – 1

 n 
n – 3 (26) 

By a Cayley-Prüfer type formula, we mean one which 
subjectively resembles (25), and which counts something 
about labelings and trees. In addition to (26), for example, 

 q 
n – q – 1 ( n – q ) q – 1 (27) 

is a Cayley-Prüfer type formula; (27) expresses the number 
of spanning trees of a q × ( n – q ) bipartite clique whose 
labels are fixed ([Comtet 1974] p. 92). 
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⎣  x ⎦  Floor, or greatest integer not greater than the real number x. page 9 

   ;;;    iff End of proof; if and only if 8, 22 

Γ(x) Adjacency of vertex x: all vertices with which x shares an edge. 10 

Φ(G )∆ Set of distinct labelings of G, metrized on distance | ·, · | ∆. 7 

ΦK ( jd – 1, … , j0 ) Number | Φ(K j ) | of free K-mesh labelings, explicated Hamming radix ( jd – 1, … , j0 ). 12 

0 ; 1 (Binary) label with all digits zero (all bits clear); resp. all digits one (all bits set). 8, 8 

adjacency matrix Γ(G) Entry ( q, r ) is one (or nonempty) if ( q, r ) is an edge; else ( q, r ) is zero (or empty). 12 

antipodal, diametric x ∈ S, y ∈ S  are antipodal, or diametric, in metric space (S, ∆) if | x, y | ∆ = DIAM(S )∆ . 8, 8 

b Number of binary extents in a radix; number of 2-valued digits in a set of labels. 8, 9 

bipartite clique Bipartite graph on blocks V 1 and V 2 , complete with all possible | V 1 | × | V 2 | edges. 12 

bipartite graph Graph whose vertices can be bipartitioned into blocks, with all edges between blocks. 12 

bit Binary (i.e., radix 2) digit. A bit is clear if it equals zero, set if it equals one. 8 

Cayley-Prüfer type Formula subjectively resembling n 
n – 2, and counting something about labels and trees. 12 

clique number of G Order of the largest clique that graph G contains. 7 

connectivity, graph G Vertex (edge) connectivity: G's minimum q-r vertex (resp. q-r edge) connectivity. 14 

connectivity, 
q-r vertex (resp. edge)  

Maximum number of pairwise-EDJ (resp. -IDJ) paths between vertices q and r. 
  q-r-connected is shorthand for q-r-vertex-connected 13, 13 

degree of vertex x Number of vertices | Γ(x) | with which x shares an edge. Γ(x) is the adjacency of x. 14 

degree-regular graph Graph whose vertex degrees are all equal. A graph that is not regular is irregular. 10, 10 

diameter, DIAM(S )∆ Maximum eccentricity, max x ∈ S ECC(x)S, ∆ , of the metric space (S, ∆). 8 

distinct vs identical 
labeled graphs 

Labeled graphs G and Q are the same, or identical, or equal, if their vertices and 
edges are equal: V(G) = V(Q) and E(G) = E(Q). Otherwise, G and Q are distinct. 7, 7 

eccentricity, ECC(x)S, ∆ Maximum distance between x and some other element of the metric space (S, ∆). 13 

eP ( jd – 1, … , j0 ) Size | E(P j ) | of P-mesh P j with explicated Manhattan radix j = ( jd – 1, … , j0 ). 10 

f Number of 4-ary extents in a radix; number of 4-valued digits in a set of labels.
Worst-case number of faults tolerated = one less than the vertex connectivity. 

9,
20 

free labeling n-vertex graph G is free-labeled by any matching between V(G) and L n 
1.

Φ(G ) denotes the set of distinct free labelings of the set G of graphs. 
7,
7 

geodesic Minimum length path. 11 

Gray-coded graph G; 
G is Gray-codable if it 

can be Gray-coded 

G is Gray-coded if i) labels on all edge-adjacent vertices are Gray-code adjacent, and 
ii) all vertex pairs with Gray-code adjacent labels are edge-adjacent. Imposing (i) 
only, we have a weak Gray coding, which some authors take as the definition of Gray 
coding (e.g., [Wakerly 1994] pp. 47, 53). While a path or cycle subgraph of a 
Hamming-labeled K-mesh may not be Gray-coded, it is always weakly Gray-coded. 

14, 14 

IDJ paths Paths are interior-disjoint if, apart from their endpoints, the paths do not intersect. 8 

j [ q , b ] ;  
J [ q , b ] 

Subset of q extents drawn from the subvector ( jd – 1, … , jb ) on the d – b high-order 
extents of a d-dimensional Manhattan radix with b bits; J [ q , b ] = set of all j [ q , b ]. 10, 10 

nP ( jd – 1, … , j0 ) Order | V(P j ) | of P-mesh P j with explicated Manhattan radix j = ( jd – 1, … , j0 ). 10 

ones complement x Result of setting the clear bits of binary label x, and clearing the bits of x that are set. 8 

t Number of ternary extents in a radix; number of 3-valued digits in a set of labels. 9 

weight of label x; µ Number of nonzero digits in x. Vector µ for taking inner product with an indicator. 8, 26 

Table 3: Nomenclature and notation introduced, directly or indirectly, beginning with Section 2. 
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a. 

(Graphs: Gray-codable vs Hamming). Let L j be all labels radix j. The Hamming distance maps 
each λ ⊆ L j into a unique graph G, such that each component of G is Hamming-labeled by one 
of the Gray-code-transitive blocks that partition λ. Any Gray-coded graph comprises 
Hamming-labeled components. A Hamming graph is just a connected Gray-codable graph. 

[LaForge 2004] 
Thm. 2 

b. 

(Existence and uniqueness of Hamming ideal). Graph G is Hamming if and only if G is 
invariantly (resp. cube-monotonically) induced from its K-mesh (resp. K-cube) ideal. To wit: 
suppose G has Hamming dimension d, mesh radix j, and cube radix j. Then K j  (resp. K j 

d ) is 
the unique mesh (resp. cube) ideal of G ; that is, the smallest complete Hamming graph from 
which we can delete vertices in sequence, such that each of the induced subgraphs preserves 
the edge ↔ Hamming metrization of its ideal, with invariant (resp. cube-monotone) radix. 

[LaForge 2004] 
Cor. 2.4 

c. 

Hamming ideals achieve equality in 
vertex connectivity  ≤  edge connectivity 
  ≤  min vertex degree  ≤  max vertex degree
  [Chartrand and Lesniak 1986] Thm 5.1 

=

d ( j d – 1)
for K j ; 

d ( j – 1)
for K j 

d ∑
<≤

=

= =

qi
ijq

qq

0

def

1else

0 if     0  where j
   

[LaForge 1999] 
straightforward 

extension of 
Thms 8 and 9 

d. 
(Matched hyperseparators comprise a weak factorization of any Hamming graph). Connected 
graph G is Hamming with dimension d and radix j = ( jd – 1, … , j0 ), if and only if G prime-
factorizes into d matched hyperseparators H = { Hd – 1, … , H0 } such that i) for all vertices x 
and y in G, ii) (x, y) is an edge of G whenever iii) (x, y) is an edge in K j . 

[LaForge et al 2006]
Thm 5 

e. A triangle-free graph (i.e., a graph that contains no K 3) is Hamming only if it is bipartite. [LaForge et al 2006]
Rem. (11)  

f. The cube radix of a Hamming graph equals its clique number. [LaForge et al 2006]
Rem. (13)  

g. The dimension of a Hamming graph is at least its diameter, and at most one less than its order. 
These bounds are best possible: for any order, there exist graphs which achieve them. 

[LaForge 2004] 
Thm. 3 

h. Number of vertices at 
edge distance q in K j 

d 
=  ( ) ⎟

⎠
⎞⎜

⎝
⎛−

q
j

dq1   = multiplicity of qth eigenvalue d ( j – 1)  – jq 
of the adjacency matrix of K j 

d, 0 ≤ q ≤ d 
[LaForge 1999] 

[Brouwer et al 1989] 

i. Deleting q < j0 vertices from a Hamming-labeled K-mesh K j  of dimension greater than one 
induces a graph that is Hamming on the remaining  j 

d – q vertices, with labels unchanged. 
[LaForge 2004] 

Thm. 4 

j. If G is Hamming then we can Hamming-label G with origin 0, all digits zero, at any vertex. [LaForge 2004] 
Lemma 2 

k. For integer q ≥ 2, an odd cycle C2q + 1 is not Hamming (in the unweighted sense used 
throughout most of this paper; for uniform weight ½, cf. Section 3.2, C2q + 1 is Hamming.) 

[LaForge 2004] 
Thm. 5 

l. For integer q ≥ 2, an even cycle C2q is Hamming with dimension q and radix 2. [LaForge 2004] 
Thm. 6 

m. Any n-vertex tree is Hamming with minimum dimension n – 1 and radix 2. [LaForge 2004] 
Thm. 7 

n. Two triangles of a Hamming graph either belong to the same hyperedge, or are edge-disjoint. [LaForge et al 2006]
Lemma 1  

o. Any two hyperedges of a Hamming graph are edge-disjoint. [LaForge et al 2006]
Cor 2  

p. A binary Hamming graph is bipartite. [Aurenhammer and 
Hagauer 1995] 

q. The Petersen graph is not Hamming (in the unweighted sense used throughout most of this 
paper; for uniform weight ½, cf. Section 3.2 and Figure 13, the Petersen graph is Hamming.) 

[LaForge et al 2006]
Rem. (15)  

Table 4: Hamming graph facts. Unless specified otherwise, properties are with respect to the unweighted Hamming distance. 
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Proof of Theorem 7. Cayley's formula (25) follows from 
the classic coding scheme of [Prüfer 1918] (see also [Comtet 
1974] p. 63 et seq). The code records systematic deletion of 
a tree, from the leaves inward. For completeness, and in 
keeping with the computational emphasis of contemporary 
graph theory ([Corman et al 1993] Sec VI), we adapt a proof 
from [LaForge 2004 MANETs]. Algorithm A –1

Prüfer below 
fleshes out the "as the reader should check" part of the proof 
sketched on page 277 of [Bollobás 1998]. 

Algorithm A Prüfer ( Tn ) % Input: free-labeled tree 
1) If n ≤ 2  % Output: left-to-right,  
  then  output the empty  %   least-to-most Prüfer code 
     label and STOP % Only one tree of order 2 
2) Let q be the leaf whose % q ∈ L n 

1 denotes both 
    label q is minimum %  the vertex and its label 
3)  r be q's neighbor % Output a label ∈ L n

n – 2 
4) Output the label r %  of n – 2 labels ∈ L n 

1 
5) A Prüfer ( Tn – q ) % Recursive invocation 

Algorithm A –1
Prüfer ( λ n

n – 2
 ) % Input: label ∈ L n 

n–2  
1) If n = 2 (i.e., λ n

n – 2 is the empty label) 
  then  output the edge (0, 1) 
    and STOP % Only one tree of order 2 
2) Let q be the least value of 
   L n 

1 that is not a digit of λ n
n – 2

   
3) Let r be the value of the leftmost 
   (i.e., high-order) digit of λ n

n – 2
   

4) Let λ n – 1
 n – 3 be the rightmost  

   (i.e., low-order) n – 1 digits of λ n
n – 2, any such 

   digit decremented by one if it is greater than q 
5) Let T n – 1 be the result of incrementing by one every 
   label, whose value is greater than or equal to q, 
   on the tree output by A 

 –1
Prüfer ( λ n – 1

 n – 3 )  
6) Output T n , the result of adding  
    edge ( q, r ) to T n – 1 % Graft leaf onto tree 

By inspection, and for any Tn , Algorithm A Prüfer  outputs a 
unique n-ary label λ n

n – 2 of length n – 2: the left-to-right, 
least-to-most Prüfer code of Tn. It remains to prove, by 
induction on n, that Algorithm A –1

Prüfer (re-)constructs Tn 
from λ n

n – 2. For a basis, there is but one free-labeled tree on 
n = 2 vertices. The empty label therefore prescribes the tree 
on the free-labeled edge (0, 1), whence line 1 of A –1

Prüfer. 

Assume that A –1
Prüfer (re-)constructs trees for labels of length 

0, … ( n – 3 ), having uniform extents 2, … resp. ( n – 1 ), 
and input an arbitrary n-ary label λ n

n – 2 of length n – 2. At 
Line 2 we let q be the least value between 0 and n – 1 
inclusive that is missing (there must be at least two) from 
λ n

n – 2. Lines 3 and 4 remove the leftmost digit r of λ n
n – 2. In 

the label λ n – 1
 n – 3 so truncated, Line 4 decrements any digit 

whose value exceeds q. Since 0 ≤ q ≤ n – 1, this guarantees 
that the extent of the truncated label is ( n – 1 )-ary.  

By induction, the recursion at Line 5, with the digit-
decremented λ n – 1

 n – 3 as argument, outputs a unique 
( n – 1 )-vertex tree, free-labeled on L n – 1 

1. Also by 
induction, applying Algorithm A Prüfer to this free-labeled tree 
outputs λ n – 1

 n – 3. Returning to the top-level thread of 
execution, note that the Prüfer code explicates the labels of 
the neighbors of the (outermost) leaves. In particular, A Prüfer 
initially outputs the leftmost label r if and only if the tree on 
which A Prüfer operates contains a vertex r that is the neighbor 
of a leaf whose label q is less than that of any such leaf. The 
recursively-constructed T n – 1, with labels incremented in 
accordance with n-ary uniform extents, satisfies these 
conditions. By Lines 2 and 5, any leaf added by the 
recursive invocation to Algorithm A –1

Prüfer has a label that 
exceeds q. Thus, joining leaf q to vertex r at Line 6 
completes the construction of T n , and Algorithm A Prüfer , 
acting on T n, outputs λ n

n – 2. (Cf. exercise, Table 8.c.) 

Each n-ary label of length n – 2 (interpreted as a Prüfer 
code) corresponds to a unique free-labeled tree of order 
n ≥ 2, and conversely. Together with the trivial case at n = 1, 
this one-to-one correspondence implies (25).    

To illustrate Theorem 7, there are 7 
5 = 16807 free-labeled 

trees of order 7. Figure 5 depicts one of these, along with its 
Prüfer code 11313, as output by Algorithm A Prüfer. Figure 6 
traces the execution of Algorithm A –1

Prüfer , as it re-constructs 
the same tree from its Prüfer code 11313. 

At last to the number of Hamming labelings of Tn. The result 
of Table 4.m predates that of Table 4.d, and so was proved 
without the benefit of insights about how all Hamming 
graphs hyperfactorize. Exploiting these since-discovered 
facts, we streamline Theorem 7 of [LaForge 2004] as 

Lemma 2 .  Tn is binary Hamming with dimension d = n – 1. 

Proof. There is only one path between two vertices, else Tn 
is not a minimum-size connected graph, contradicting the 
definition of tree in Table 1. Thus, any edge is a 
hyperseparator of Tn. By the result of Table 4.d, the 
minimum Hamming dimension is Tn's size n – 1 ([Bollobás 
1998] p. 11). Since an edge is a K 2 

1, the extent-minimum 
radix is uniformly two.    

Remark 3. Notwithstanding the general-purpose Algorithm 
A Label-Hamming, illustrated in Figure 4 and Figure 8, the result 
of Table 4.m gives a useful algorithm for Hamming-labeling 
any tree Tn . As Figure 7 exemplifies: For n = 1, assign a 
lone vertex the empty label. For n > 2: pick any leaf q of Tn. 
Inductively Hamming-label Tn – q, a tree of dimension n – 2 
and radix 2. Prepend a cleared bit to each label of Tn – q. 
Make the label q the same as that of its unique neighbor, 
only set the high-order bit on q. Since there is only one path 
between two vertices, this ( n – 1 )-bit labeling is Hamming. 
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Figure 5: Algorithm A Prüfer codes a free-labeled tree of order n. Shown above: tree with order 7 and Prüfer code 11313. 
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Figure 6: Execution trace of Algorithm A –1
Prüfer , as it re-constructs the tree of Figure 5 from the Prüfer code 11313. 
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Figure 7: The algorithm of Remark 3 Hamming-labels any tree. Shown here: execution trace for same input as in Figure 5. 

We can pivot the recursion on the edge of any leaf q. By the result of Table 4.d, in fact, any edge will do. 

010111

000111

001101

001111

001110

001011

100111

 
Figure 8: Introduced in [LaForge et al 2006], general-purpose Algorithm A Label-Hamming does not necessarily 

give the same result as the tree-labeling algorithm of Remark 3. Together with the instance of Figure 7, the above-shown 
solution, computed by Connection Foundry's implementation of A Label-Hamming, comprise but two of the 153664 seven-vertex 

Hamming-labeled trees having minimum dimension 6 and extent-minimum radix 2. Compare with Figure 4. 
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Figure 9: The set Φ(Tn ) H  at n = 3. All 2 n – 1 n n – 3 = 4 extent-minimum Hamming-labeled trees of minimum dimension 2. 
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Figure 10: The set Φ 0 (Tn ) H at n = 4. All n n – 2 = 16 binary-Hamming-labeled trees, of minimum dimension 3, that contain 0. 

By Corollary 1, the number of Hamming-labeled trees with a fixed but arbitrary label equals the number of free-labeled trees. 

λ ; λ n
n – 2 n-ary label of length n – 2. Not to be confused with the label set λ (in bold). page 15 

Φ 0 (Td+1) H , Φ x (Td+1) H Set  of d-dimensional Hamming-labeled trees containing 0 resp. arbitrary fixed label. 19 

 ρ 

–
MOL ( f, n ) Lower bound (38) on radius, any minimum-size ( f + 1)-connected graph of order n. 20 

τ ( d ) Number | Φ(Td+1) H | of d-dimensional Hamming-labeled trees. 19 

τx ( d ) | Φ x (Td+1) H |. That is, τ ( d ), such that each tree contains a fixed but arbitrary label. 19 

in-, out- degree of x Number of vertices y such that ( y, x) resp. ( x, y) is an arc.  25, 25 

digraph Directed graph comprising arcs prescribing an irreflexive relation on its vertex set V. 25 

fault Nonfunctioning or untrustworthy processing node, herein modeled by vertex deletion 20 

( f + 1, g) cage ( f + 1)-regular graph with girth g and minimum order. 20 

girth of graph G Minimum size (= minimum order) of any cycle that is a subgraph of G. 20 

gracefully degradable 
set of graphs 

Sequence of ( f + 1)-connected graphs, whose order grows without bound, such
that the diameter of any component induced by deleting up to f vertices is Θ(ρ 

–
MOL ). 20, 21 

interior vertex ; leaf Vertex other than a leaf; resp. vertex with degree one, usually in a tree. 20, 15 

lg Logarithm with respect to base 2 25 

n Moore ( f, h ) Upper bound on the order of any ( f + 1)-regular graph, for given f > 2 and radius  h. 20 

o( g( q ) ) Set of functions h( q ) such that lim q → ∞ (h / g) = 0. 20 

Ore tree (A.k.a. distance or breadth-first) spanning tree preserving edge distance from its root. 20 

radius, RAD(S )∆ Minimum eccentricity, min x ∈ S ECC(x)S, ∆ , of the metric space (S, ∆). 20 

strongly q-connected Digraph with 2q IDJ paths between x and y, q in each direction,  ∀ vertex pairs x, y. 25 

Tn, Tn Tree of order n, set of all trees of order n. 12 

Table 5: Nomenclature and notation introduced, directly or indirectly, beginning with first proof in Section 2.5. 
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Continuing in the spirit of Lemma 2, we showcase the 
Hamming dimension d. With respect to the result of Table 
4.b, for example, each tree of Tn , Hamming-labeled on d 
bits, spans d + 1 vertices of its Hamming ideal K 2 

d. 
Similarly, we will prefer dimension to size, mindful that 
Lemma 2 tells us that these two quantities are equal. 

Proof of Theorem 8. By the result of Table 4.j, we can 
replace any of d + 1 vertices in a Hamming-labeled tree with 
0 (the label of d cleared bits), then adjust the remaining 
labels to assure that the modified tree is also Hamming-
labeled. Conversely, consider the set Φ 0 (Td+1) H  of d-
dimensional Hamming-labeled trees that contain 0. 
Transform each tree in this set into another Hamming-
labeled tree by replacing 0 with an arbitrary label x from 
L 2 

d, maintaining bitwise-even parity with any other label y 
in the tree. That is, if the qth bit of y was clear, then make the 
qth bit of y equal to the qth bit of x; otherwise, the qth bit of y 
was set, so make the qth bit of y equal to the complement of 
the qth bit of x. Each vertex x appears in the same number of 
trees, so, over all 2 

d vertices x in K 2 
d, the sum of the 

cardinalities of the sets Φ x (Td+1) H  of d-dimensional trees 
that contain x equals 2 

d
 | Φ 0 (Td+1) H | = 2 

d
 | Φ x (Td+1) H |. But 

this counts each tree once for every vertex it contains; i.e., it 
counts each Hamming-labeled tree d + 1 times. Letting 
| Φ(Td+1) H | = τ ( d ) and | Φ x (Td+1) H | = τx ( d ),  it follows that 

  ( d + 1 ) τ ( d ) = 2 
d τx ( d ) (28) 

Our shorthand τ ( d ) reads: "The number of d-dimensional 
Hamming-labeled trees". In the paragraph preceding (28), x 
is a dummy, or formal, variable; thus, τx ( d ) reads: "The 
number of d-dimensional Hamming-labeled trees, such that 
a fixed but arbitrary label appears somewhere in each tree". 
In a fashion reminiscent of the Catalan recurrence ([Comtet 
1974] p. 53), we pinpoint τ ( d ) and τx ( d ) by establishing: 

 ∑
<≤

−−
−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

dq
xx qdq

q

d
d d
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)1()(
1

2)( τττ 1  (29) 

Subject to the initial conditions  τ ( 1 ) = 1 = τx ( 1 ) (30) 

By Lemma 2, d bits are necessary and sufficient to 
Hamming-label Td+1 , wherein there is a unique edge ( y, z ) 
such that labels y and z differ only in the ( d – 1)st bit. By the 
result of Table 4.d, ( y, z ) separates Td+1 into two Hamming-
labeled sub-trees. Within either sub-tree, the ( d – 1)st bit 
value remains unchanged. For 0 ≤ q < d, the dimensions of 
these sub-trees are, say, q resp. d – 1 – q, corresponding to a 
q × ( d – 1 – q ) partition of the low-order d – 1 bits. Within a 
sub-tree, only the bits in its partition change, and each bit 
toggles only once as we traverse some edge. The set of 
possible sub-trees on each side of edge ( y, z ) is determined 
by the bit partition. For given ( y, z ) and bit partition, the 
number of Hamming-labeled trees equals τx ( q ) times 
τx ( d – 1 – q ), whence the rightmost two factors in (29). 

The number of q × ( d – 1 – q ) partitions of the low-order 
d – 1 bits of y (or z) is just the binominal coefficient in (29). 
By the result of Table 4.b, summing over all edges ( y, z ) is 
equivalent to summing over all vertices in the ( d – 1)-
dimensional binary cube K 2 

d – 1, hence the coefficient 2 
d – 1 

on the righthand side of (29). To put a fine point on this, 
note that including clear-set and set-clear ordered pairs for 
the leftmost bit of y and z double-counts the possibilities. 
Therefore, only the low-order d – 1 bits contribute to τ ( d ). 
All such summands are the same, hence the coefficient 2 

d – 1 
on the righthand side of (29). 

Having established (29), let us prove that its solution is 

  τx ( d ) = ( d + 1 ) d – 1 ; τ ( d ) = 2 
d

 ( d + 1 ) d – 2 (31) 

Verify that (31) satisfies (30) at d = 1. Applying (28) and the 
lefthand side of (31) to (29), it suffices to show that 

  ∑
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Start with Abel's generalization of the binomial identity: 
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… for integer m ≥ 0 and real u, v, w ([Comtet 1974] p. 128). 
Substitute m = d – 2, w = –1; u = 1, v = d, and multiply by 2: 
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Reminiscent of a stock-in-trade method for summing an 
arithmetic sequence (questionably ascribed to Gauss [Hayes 
2006]), expand (34), reverse one of the series, and pair up 
terms with identical exponents and bases (cf. exercise, Table 
8.d ). We can therefore re-express 2 

d
 ( d + 1 ) d – 2 as 
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Invoke Pascal's recurrence for the binomial coefficient 
([Comtet 1974] p. 10), and expand the last term in (35): 
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 (36) 

Straightforward manipulation reduces (36) to (32); thus, 
(31) solves (29). Using the relation d = n – 1 of Lemma 2, 
(26) follows by re-writing (31) in terms of the order n.  
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Comparing (25) with (31) unveils a pleasant bonus: 

Corollary 1 . The number τx  of trees of given order n, 
Hamming-labeled on the minimum number of bits, 
and with fixed but arbitrary label, equals the Cayley-
Prüfer number n 

n – 2 of free-labeled trees (25). 

To illustrate Theorem 8 and Corollary 1: a) There are 2 
6·7 

4 
= 153664 Hamming-labeled trees of order 7; Figures 7 and 8 
depict two of these. b) The number of three-vertex 
Hamming-labeled trees equals 2 

2·3 
0 = 4; Figure 9 exhibits 

all of these trees, i.e., the set Φ(T3) H. c) Exactly 4 
2 = 16 

Hamming-labeled trees on four vertices contain 0 = 000; 
Figure 10 enumerates the corresponding set Φ 0 (T4) H. 

In terms of Table 4.b, | Φ(Td+1) H | = τ ( d ) is the number 
2 

d
 ( d + 1 ) d – 2 of trees of maximum order ( d + 1 ) induced 

from K2 
d, and | Φ x (Td+1) H | = τx ( d ) is the number ( d + 1 ) d – 1 

of such trees containing a fixed but arbitrary label. 

3. WHIRLWIND TOUR: APPLICATIONS, RELATED 
WORK, ALGORITHMS, AND OPEN PROBLEMS 

3.1 Network Anatomy and Envelopes of Eccentricity 

Tight metrizable graphs stand to benefit information 
communication. For example, configuring packet-switched 
network anatomies to match the adjacency of K-cubes 
achieves optimality in a multivariate sense of fault tolerance, 
throughput, latency, and power. More precisely: a) The 
degree d ( j – 1) of K j 

d equals its vertex connectivity (Table 
4.c); thus, K j 

d minimizes size; i.e., K j 
d gives equality in 

  | E (G): G is ( f + 1)-connected | ≥  ⎡½ ( f + 1) n⎤  (37) 

… for given number f = d ( j – 1) – 1 of faults tolerated, in 
the worst-case sense of [Harary 1962] and [Hayes 1974]. 
b) Under a model of uniform point-to-point channel capacity 
and power, K j 

d therefore optimizes the cost of fault tolerance 
that is super-logarithmic, but sub-linear, in the order. c) In 
the absence of faults, K j 

d optimizes the source-sink 
throughput, in the max-flow, min-cut sense of Ford and 
Fulkerson ([Corman et al 1993] p. 493). d) Graceful 
degradation of latency ([LaForge et al 2003] Cor. 13.2): for 
d ∈ o( j ), the diameter of a component induced by deleting 
any number of vertices of K j 

d, up to the worst-case fault 
tolerance f, converges to a lower bound on the radius of any 
minimum-size graph G with order n and connectivity f + 1: 

RAD(G ) ≥  ρ 

–
MOL 

⎥⎥
⎤

⎢⎢
⎡

⎥⎦
⎤

⎢⎣
⎡=

+++

+++−

]2mod)1([1

]2mod)1([2)1(log
def

fnf

fnfn
 f

 (38) 

Not all hypercubes enjoy these advantages, especially (d), as 
summarized in the paragraph preceding (38). For example, 
P-cubes (always Hamming) and C-cubes (sometimes 
Hamming) diverge from (38), as n = j 

d → ∞, regardless of 
how d scales with j ([LaForge et al 2003] Thm 15). 

Pioneering investigations that set the stage for the preceding 
model and results can be traced through Chapter IV of 
[Bollobás 1978], and references cited therein. Erstwhile 
subtle differences in formulation are in fact notable, as are 
limits to the practical applicability of the accompanying 
theorems. From [Erdös and Rényi 1962] to [Sampels 1997], 
researchers often seek to minimize size, for given diameter 
and maximum vertex degree, but without explicit concern 
for fault tolerance or, equivalently, connectivity. Adopting a 
model a bit closer to that synopsized in (a) though (c) of the 
paragraph preceding (38), [Murty and Vijayan 1964] strive 
to minimize size, subject to given initial diameter and the 
maximum diameter of components induced by deletion up to 
any f vertices. Alas, solutions of this era are essentially 
confined to instances where the initial diameter equals 2, the 
induced diameter is less than or equal to 4, or the fault 
tolerance f equals 1. 

By contrast, the classical upper bound n Moore ( f, h ) ascribed 
to E. F. Moore (39) constrains the order n of an ( f + 1)-
regular graph, for given f > 2 and radius h. To visualize this, 
adjoin a root vertex to the root of each of f + 1 trees, each f-
ary and of height h – 1. This yields a tree of height h whose 
interior vertices are ( f + 1)-regular, hence  

1
1

)1(1)1(1
0

def
Moore −

−
++++=≤ =∑

<≤
f
ffffnn

h

hq

q  (39) 

… and where we have invoked the formula for summing a 
geometric series ([Comtet 1974] p. 26). Maximally 
populating each level yields a Moore-complete tree with 
maximum order n Moore . [Ore 1962] observed that, from any 
vertex x in connected graph G, there is spanning tree of G 
that preserves the edge distance between x and every other 
vertex. Such a tree is alternatively deemed Ore, distance, or 
breadth-first ([Corman et al 1993] p. 469). If every such 
f-ary Ore tree of height h is Moore-complete then G is 
diametrically Moore ([Bermond and Bollobás 1981] p. 7): 
a) G achieves equality in (39). b) G has minimum radius h, 
over all ( f + 1)-regular graphs of order n 

+
Moore . 

c) G achieves equality in the leftmost two relations of: 

 RAD(G) ≤ ECC(x) ≤ DIAM(G) ≤ 2·RAD(G) 
  ([Chartrand and Lesniak 1986] Thm 2.4) (40) 

Thus, the tightest graphs for which we could hope are 
diametrically Moore, wherein DIAM = h, as given by (39). 

To preempt potential confusion, n Moore also bounds from 
below the order of an ( f + 1)-regular graph with odd girth 
g = 2h + 1. For even girth g = 2h, the lower bound reduces 
to 2 ( n Moore – 1 ) / ( f + 1). Graphs of minimum order closest 
to these bounds are the ( f + 1, g) cages. Cages whose order 
exactly matches these bounds are girthed Moore graphs, for 
g = 2h + 1; resp. generalized polygon graphs, for g = 2h 
([Biggs 1996] p. 181; [Bollobás 1998] p. 106 uses Moore 
graph to subsume both odd and even girth). 
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While cages are fascinating, the practical applicability of 
girth falls short of what computer architects desire for fault-
tolerant, high-throughput, low-latency, power-conserving 
multi-processor systems. Indeed, our own work on avionics 
for deep-space probes ([LaForge 1999], [LaForge 2000]) 
prompted us to adopt refinements as follows. 

For a worst-case-f-fault-tolerant network or computer bus, 
any f processors can fail, yet the remaining  n – f  healthy 
processors are guaranteed to remain connected. Under a 
point-to-point model of communication, the network or bus 
adjacency must therefore match that of an ( f + 1)- 
connected graph. However, ( f + 1)-regularity does not 
imply ( f + 1)-connectivity (Table 4.c). In the interest of 
accurate modeling, we replace conditions of regularity and 
girth with connectivity and minimum size. Translated to 
count of discrete channels, the latter is consistent with 
practical goals for conserving power. As good luck would 
have it, these erstwhile more stringent conditions imply 
regularity or near-regularity: n – 1 of the n vertices of an 
( f + 1)-connected minimum-size graph have degree f + 1, 
and one vertex has degree f + 1 + [( f + 1) n mod 2]. For all 
n > f + 1 > 1, [Harary 1962] and [Hayes 1974] give 
constructions for regular (or nearly regular) chordal graphs 
with the corresponding minimum size ⎡½ ( f + 1) n⎤; i.e., 
( f + 1)-connected graphs that achieve equality in (37). 

It appears that the edge distance in Harary-Hayes chordal 
graphs was not formulaically pinpointed until Theorem 1 of 
[LaForge et al 2006]. The upshot: even in the absence of 
faults, the bloated diameter is, alas, within one of that of a 
maximally eccentric ( f + 1)-connected graph, where the 
latter is without the condition of minimum size. Figure 11 
plots the formidable gap between this worst possible 
diameter ~ n / ( f + 1) and the best possible radius ρ 

–
MOL . All 

this reinforces our call for graphs that a) are ( f + 1)-
connected; b) have minimum size (37); c) are constructible 
for most (if not all) n and f ; d) unlike Harary-Hayes graphs, 
deliver eccentricity approaching ρ 

–
MOL , even in components 

degraded by faults (i.e., induced by deleted vertices). 

With respect to (c), (d), and (39), note that, in the absence of 
faults, the root of at most one Ore tree has degree f + 2. In 
the infinitely many cases when both n and f + 1 are odd, that 
is, a diametric Moore graph cannot exist. Otherwise, 
( f + 1) n is even, and any minimum-size ( f + 1)-connected 
graph is ( f + 1)-regular. For f ≥ 2, therefore, any ( f + 1)-
connected diametric Moore graph also has odd girth 2h + 1; 
whence the diameter equals h as given in (39). But, apart 
from cycles and cliques, there either four or five Moore 
graphs of odd girth ([Biggs 1996] pp. 185 – 187). E.g., the 
(3, 5) cage, a.k.a. the Petersen graph depicted in Figure 13, 
is one of them; the existence of a (3, 57) Moore graph 
remains open. In the interest of criterion (c), therefore, it 
behooves us to relax our quest for diametric Moore graphs. 

To this end, note that adding an edge to any graph neither 
decreases the connectivity, nor does it increase the 
eccentricity of any vertex. By monotonicity, that is, we can 
shift our optimization spotlight from the graph order (39), 
and refocus on eccentricity as our primal objective: 

  What ( f + 1)-connected minimum-size n-vertex 
  graphs minimize the maximum a) radius or b) diameter  
  of components induced by deleting up to f vertices? (41) 

This gives rise to (38), deemed the "Moore-Ore-LaForge 
Bound" by colleagues at the Jet Propulsion Laboratory 
[LaForge 1999]. The calculation mod 2 accommodates odd 
values of ( f + 1) n, and the ceiling function ⎡ · ⎤ captures 
incomplete Moore trees. As a check at n = 10 and f = 2, 
verify that, with diameter = 2, the Petersen graph 
(Figure 13) achieves equality in (38), without the ceiling. 

Reminiscent of the formulation of [Murty and Vijayan 1964] 
mentioned earlier in this section, conditions (a) and (b) of 
(41) are considerably more severe than merely asking for the 
minimum eccentricity in the absence of faults. To balance 
this exigency, sequence a set of ( f + 1)-connected minimum-
size graphs whose order grows without bound. Such a set 
degrades gracefully if the diameter of any component 
induced by deleting up to f vertices is Θ(ρ 

–
MOL ). Of course, 

we also seek to minimize the Θ-constant. While it is perhaps 
traditional to seek the minimum diameter (41)(b), life is 
often easier when dealing with the radius (41)(a). By (40), 
the diameter is at most twice the radius, a fact subsumed by 
our secondary objective of minimizing the Θ-constant. 

Which brings us to K-cubes whose radix j and dimension d 
are allowed to vary. Unlike Harary-Hayes chordal graphs,  
{ K j 

d } can be tight in the absence of faults, remaining tight 
in the presence of faults. Figure 12 illustrates how this tight 
latency manifests even in the relatively small n = 9 two-
dimensional ternary K-cube K 3 

2. In the large, and recalling 
the paragraph before (38), { K j 

d } degrades gracefully: as 
n = j 

d → ∞, and for d ∈ o( j ), the ratio of ρ 

–
MOL( K j 

d ) to the 
diameter of any component, induced by deletion of up to 
 f = d ( j – 1) – 1 vertices from K j 

d , converges to one. 

[Bermond and Bollobás 1981] pose as open whether there 
exists a sequence of graphs with maximum degree  f + 1, 
order Θ( n Moore ), and diameter at most h, as given in (39). 
Since connectivity and eccentricity are monotone in size, the 
graceful degradation of { K j 

d } ([LaForge et al 2003] Cor. 
13.2) answers their question in the affirmative. 

This is by no means the final word on (41), however. For 
example, convergence of { K j 

d } to ρ 

–
MOL is logarithmically 

slow. As Figure 11 elaborates, moreover, { K j 
d } is but a 

partial solution to (41), and falls short of our desire (c) for 
constructibility over a wide range of n and f. By contrast, we 
can synthesize a Harary-Hayes graph for any n > f + 1 > 1. 
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 Combinatorial Hamming Properties of Interesting Graphs 

 Minimum 
Hamming Dimension 

Extent-minimum 
Hamming Radix | {Hamming Labelings} | 

| {Free Labelings} | 

C
-m

es
h 

C
 j 

[½ (d j d – 3t)] + t  
d = Lee dimension, 

t = | {ternary extents in 
         the Lee radix j} |,  
iff d – t extents all even 

Lemma 1, Remark 1 

3 for t high-order extents
           in the Lee radix j
else 
  2 for [½ (d j d – 3t)] 
           low-order extents 

Lemma 1, Remark 1 

 1  if b + f = d – t   
   b = | { binary extents } | 
   f  =  | { 4-ary extents } | 
else 2b + t + f – d

  [ ½ (d j d – 3t) ]!
    iff all extents > 4 are even 

Theorem 2 

2⎡b / 2⎤ – d
  ( j d – 1)! 

b = | {binary extents in 
           the Lee radix j} | 

 
Theorem 3 

C
-c

ub
e 

C
3 d  

Ternary hypercube 
same as K-cube K3 

d
 . 

Lee dimension d 
 = Hamming dimension 

3 
 

Remark 1 

1 
 

Theorem 2 

2– d
  ( 3 d – 1)! 

 
Theorem 3 

C
-c

ub
e 

C
2 d  

Classic binary hypercube 
same as K-cube K2 

d
 . 

Lee dimension d 
 = Hamming dimension 

2 
 

Remark 1 

1 
 

Theorem 2 

2– d
  ( 2 d – 1)! 

 
Theorem 3 

C
yc

le
 C

n  1  for n = 3 
undefined for odd n ≥ 5 
 n / 2 for n = 2d ≥ 4 

n = order of Cn 

 3  for n = 3 
undefined for odd n ≥ 5
 2 for n = 2d ≥ 4 

Table 4.e, f, k 

 1  for n = 3 
 0 for odd n ≥ 5 
½ ( [ n / 2 ]!) for n = 2d ≥ 4 

Theorem 1 

 1 for n = 3 
 ½ ( n – 1)! for n ≥ 3 

 
Eq (4) 

P-
m

es
h 

P j
 d ( j d – 1) 

d ( j – 1) for P-cube P j 
d 

d = Manhattan dimension 
Theorem 4 

2 
 

Theorem 4 

2d
 
( j – 2)

 [d ( j d – 1)]! 
 

2d
 
( j – 2)

 [d ( j – 1)]! for P-cube 
Theorem 4 

( ½ ) 
⎣

 
b / 2 

⎦ + d
  ( j d )! 

b = | {binary extents in the 
           Manhattan radix j} | 

Theorem 5 

Pa
th

 P
 n n – 1 

n = order of Pn 
Theorem 4 

2 
 

Theorem 4 

2 
( n – 2)

 ( n – 1)! 
 

Theorem 4 

( ½ ) n ! 
 

Theorem 5 

K
-m

es
h 

K
 j 

d 
(same) 

j 
(same) 

1 
(Mesh or cube is complete) 

For free labelings at right: 
  b = | {binary extents in the
             Hamming radix j} | 

⎣ ⎦

∏
<≤

⎟
⎠
⎞

⎜
⎝
⎛

dq
q

db

j
0

2/

)!(
)!(

2
1 j

 

Theorem 6 

{T
re

es
} 

T n
 

n – 1 
n = order of Tn 

(New, streamlined proof) 
Lemma 2 

2 
 

(New, streamlined proof)
Lemma 2 

2 
n – 1

 n 
n – 3 

(A Cayley-Prüfer 
type formula) 

Theorem 8 

n 
n – 2 

(Cayley; our algorithmic 
proof implements the 

coding scheme of Prüfer) 
Theorem 7 

T n
 

As above, but with the condition that a fixed but 
arbitrary Hamming label, of minimum 

dimension n – 1 and extent-minimum radix 2, 
appears in each Hamming-labeled tree. 

n 
n – 2 

(Another Cayley-Prüfer 
type formula) 
Corollary 1 

 

Table 6: Chief, specific, original contributions of this paper; j, j , j 
d , j d as in Table 1; j d defined in Table 4.c. 
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a. 
Beyond stock-in-trade binary cubes [Armstrong and Gray 1981], or even j-ary-cubes with j > 2 ([Brouwer 

et al 1989], [Bose et al 1995], [LaForge et al 2003]) our framework on a mixed mesh radix j facilitates 
fresh insights; e.g., a Hamming graph is radix-invariantly induced from its mesh ideal. 

Sections 
1.1, 1.2 

b. General constructions for meshes and cubes metrized on the Lee, Manhattan, and Hamming distance, 
based on cycles, paths, resp. cliques. Enumeration of Hamming versus free labelings in each case. 

Sections 
1.2, 2 

c. Qualitative and quantitative description of the hyperfactorized anatomy of Hamming graphs. Sec 1.3 

d. A C-mesh, P-mesh, or K-mesh has more free labelings than it has Hamming labelings. 
For given order, the set of trees has more Hamming labelings than free labelings. Sec. 2 

e. 

Explicit formula for the number of vertices with degree d + q in the irregular P-mesh P j : 

∑
∈ ∈

− ∏ −
],[],[ ],[

)2(2
bqbq bqi

qd i
Jj j

  0 ≤ q ≤ d – b, summation equals one if q = 0   (14) 

d = Manhattan dimension; b = | {binary extents in the Manhattan radix j} |; J [ q , b ] is the set of all subsets 
j [ q , b ] of q extents drawn from the subvector ( jd – 1, … , jb ) on the d – b high-order extents 

page 10 

f. 
Recurrence relation (15) and explicit solution (16) for the size of the irregular P-mesh P j and P-cube  P j 

d: 

| E(P j ) | = ∑
<≤ <≠≤

∏−
dq dqi

jj iq
0 0

)( 1 For P-cube, reduces to | E(P j 
d) |  = d ( j – 1) j 

d
 
–

 
1 page 10 

g. Recap of Hamming graph facts. Table 4 

h. Sampling of pertinent applications, related work, key algorithms, and (cf. Table 8) open problems. Sec. 3 

Table 7: General and ancillary contributions of this paper. 

a. 
Generalize Table 6 to the number of Hamming-labeled graphs, in cases other than C-meshes, P-meshes, 

K-meshes, and trees; give sharp results in terms of parameters such as the order n, dimension d, and radix j.
For example, how many binary Hamming graphs are there of order n? Of dimension d? 

page 1 
page 12 

b. 
Extend the theory of metrization begun for Hamming graphs, and as outlined in Sections 1.2 and 1.3. 

E.g., are C-meshes and C-cubes the radix-invariant ideals of Lee graphs? (We conjecture that they are.) 
Are P-meshes and P-cubes the radix-invariant ideals of Manhattan graphs? (We suspect that they are.) 

Crystallize and prove results analogous to those of Table 4.b and d. Generalize to other distances. 

Sections 
1.2, 1.3 

c. Quantify the order-of-magnitude running times of Algorithms A Prüfer and A –1
Prüfer . 

Prove that these are best possible or, if not, then give optimum alternative(s). 
proof of 

Thm 7 

d. 
Our proof of Theorem 8 hinges on Abel's generalization (33) of the binomial identity. We used it to verify, 
by substitution, that our exhibited solution (31) satisfies the Catalan-type recurrence (29) for the number τ  

of Hamming-labeled trees. Solve (29) by a different, illuminating method, such as generating functions. 

proof of 
Thm 8 

e. K-cubes { K j 
d } are known to multivariately optimize throughput, fault tolerance, latency, and power. 

Expand this class to, say, K-meshes, other Hamming graphs, or graphs metrizable on other distances. 
Sec. 3.1 
Eq (38) 

f. Extend the results of Table 4.b from 1-Hamming graphs to Hamming graphs with arbitrary weight vector µ. Sec. 3.2 

g. Prove that the to-date fastest Algorithm A Label-Hamming  for labeling an unweighted Hamming graph is run-
time optimal, or replace it with an optimal one. Generalize to the weighted case of µ-Hamming graphs. Sec. 3.3 

h. Bridge the Θ( | λ | ) multiplicative gap between a lower bound Ω ( d ⋅ | λ | 
 ) on the running time to decide 

whether λ is Hamming graphic, and that O ( d ⋅ | λ | 
2 ) for Algorithm A Construct-Hamming  of [LaForge 2004]. 

page 4
Sec. 3.3 

i. Derive expressions, in terms of parameters such as the order n, dimension d, and radix j, for the number 
| Φ –1(G )H | of Hamming graphic inverse metrizations; i.e., |{ λ ⊆ L j whose Hamming graph is connected} |. 

page 4
Sec. 3.3 

j. What (or how many) maximum weights are necessary to metrize all µ-Hamming graphs of order n? E.g., 
instances of µ-Hamming graphs seemed confined to µ's with weights 1 or ½ ; do we need more than this?  Sec. 3.3 

Table 8: Research avenues, open problems, and exercises. 
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Figure 11: Envelope of eccentricity, best to worst. For even connectivity, the Harary-Hayes diameter remains bloated at half 
the value of the topmost plot, and exhibits a similarly jagged trajectory. Here we have scaled the vertex degree at about the 

minimum 2 ⎡ log  1 / p n ⎤ that assures p = 10% probabilistic fault tolerance. With probability 1 – o( 1 ), that is, Bernoulli deletion 
of up to p = 10% of all n vertices induces a single component containing all of the remaining 90%. (This is somewhat 

different from the model of random graphs pioneered by Erdös and Rényi [LaForge et al 2006] Thm 3). The connectivity and 
degree of K-cubes is super-logarithmic in the order, hence { K j 

d } cannot converge to ρ 
–
MOL at minimum size n ⎡ log  1 / p n ⎤. 
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Figure 12: Envelope of degradable eccentricity. A two-dimensional ternary K-cube stays tight up to the fault tolerance f = 3. 
The diameter is the best possible ρ 

–
MOL(n = 9, f = 3) = 2 for zero or one fault; the radius equals ρ 

–
MOL for up to 2 faults. 

8

3

3
2

9

6

3
2

10

10

2
2

111001

011101

101110

101011110000

110110

001100

010111
000011

000000

best case
= worst case

 
Figure 13: Envelope of degradable eccentricity for the Petersen graph. It is one of four known Moore graphs, hence tighter 
than any other 3-connected graph of order 10 and minimum size 15. Up to the fault tolerance f = 2, moreover, it stays tight. 

I.e., deleting one or two vertices induces a component whose radius 2 is unchanged from the original, and whose diameter 3 is 
just one greater than the (optimum) original ρ 

–
MOL = 2, as given by (38). While not Hamming in the unweighted sense 

considered throughout most of this paper, the Petersen graph is Hamming with respect to uniform weight ½: the Hamming 
distance between labels as shown equals twice the edge distance between the corresponding vertices (cf. Section 3.2). 
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In the interest of expanding our menu of solutions to (41), 
what other Hamming graphs, apart from { K j 

d }, enable high 
throughput and fault tolerance, and low latency and power? 
Are there other distances whose metrized graphs a) are 
( f + 1)-connected; b) have minimum size (37); c) are 
constructible for most (if not all) n and f ; d) deliver 
eccentricity approaching ρ 

–
MOL, even in components 

degraded by faults? (Cf. research avenue, Table 8.e) The 
divergence of P-cubes and C-cubes from ρ 

–
MOL does not 

bode well for the Manhattan or Lee metrics, and so prompts 
investigations into alternatives, such as the weighted 
Hamming distance of [Avis 1978], discussed in Section 3.2. 

On an encouraging note, computer architects may at last be 
weaning themselves off of the venerable all-pairs crossbar, 
and instead building on results akin to (a) through (d) above. 
At SiCortex, for example, designers are leveraging such 
results to realize massively-parallel multi-computers 
[Metcalfe 2007]. Splitting a bidirectional channel into two 
one-way channels, a minimum-size undirected ( f + 1)-
connected graph is consistent with a strongly ( f + 1)-
connected digraph on fewest arcs, such that each vertex has 
in-degree = f + 1 = out-degree. This changes the tree 
underlying (39) to one whose interior vertices all have out-
degree f + 1. The directed version of (38) thus emerges as: 

  DIAM ≥  RAD ≥  ρ 

–
MOK 

def
=  ⎡ log f + 1( 1 + n f ) ⎤ – 1 (42) 

Our subscript K acknowledges [Kautz 1968], whose 
constructions achieve equality in the Moore-Ore-Kautz 
Bound (42). SiCortex's SC5832 comprises 972 network 
nodes, each with six processor cores; the underlying (3, 3)-
regular Kautz digraph has best possible diameter 
⎡ log 3( 1945) ⎤ – 1  = 6 [SiCortex Fabric 2006]. Interviewed 
for this paper, SiCortex's chief technology officer credited 
the Internet search engine Google as key to his (re)discovery 
of the Kautz digraphs [Leonard Phone Conv 2008]. 

Along with ρ 

–
MOL (38) and  ρ 

–
MOK (42), the best possible 

diameter of a minimum-size (strongly) ( f + 1)-connected 
(di)graph grows logarithmically in the order n. However, 
and as Figure 11 illustrates, connectivity (hence degree, 
hence the logarithmic base) can scale as a function of n. To 
bound the diameter at q, for example, the degree is Θ(n1/q). 
While for computers that we wire together it may well be 
reasonable to hold the degree fixed, it is compellingly 
attractive to tune the degree when wireless communications 
make it relatively easy to (re)configure adjacency. To this 
end, the recently-invented steerable vertical cavity surface-
emitting laser of [Choquette et al 2006] bodes promise for 
self-tuning multi-computers interconnected by free-space 
optics [LaForge et al 2006 VCSELs]. In the context of grid 
computing, [LaForge et al 2006] expound on tunable 
connectivity, with emphasis on mobile ad hoc networks 
(MANETs) interconnected by radio communications. 

3.2 Network Physiology and Cross-Layer Optimization  

Notwithstanding the attractive properties of K-cubes, is 
metrization essential to anatomical optima (41), such as 
graceful degradation, or maximization of the ratio of 
connectivity to the average degree? Not really. As with the 
K-cube of Figure 12, for example, graphs induced from the 
Petersen graph (cf. Figure 13) are attractively tight. 
However, the Petersen graph is not Hamming, at least in the 
unweighted sense used so far in this paper (Table 4.q). More 
generally, and in light of scalable constructions such as 
those of [Kautz 1968], should computer architects find 
metrized graphs desirable? If so, then why? 

Our answer: yes, computer architects should indeed prefer 
metrized graphs, and for reasons of network physiology. For 
example, suppose we connect computers via communication 
links, in correspondence with the edges of some Hamming 
graph. Further suppose that each node stores its own 
Hamming label, along with the labels of its neighbors in the 
underlying graph. Then the Hamming labeling serves as a 
distributed table that drives geodesic routing Algorithm 
A H-Route: forward a packet to a neighbor whose label 
minimizes the Hamming distance to the destination. 

[LaForge 2004] introduced a pseudocoded version of 
Algorithm A H-Route , since implemented in the Connection 
Foundry software shown in Figures 4, 8, and 13. If a graph 
is Hamming-labeled with fewest digits d then, by Table 4.b, 
d is the dimension of its Hamming ideal. The diameter is at 
most d, and no geodesic entails more than d + 1 routings of 
a single packet. Under a model where it takes constant time 
to compute the Hamming distance between two labels, 
Algorithm A H-Route  takes time O( d j d ) to find the minimum 
Hamming distance between the destination label and some 
neighbor. Thus, the time to route any packet is O( d 2 j d ). If 
computing the Hamming distance is deemed to take constant 
time per digit, then multiply this cost (as well as any lower 
bound) by Θ( d ). To account for bit-level representation of 
non-binary digits, multiply the cost by Θ( d lg j  ), where the 
latter invokes the shorthand notation of Table 4.c, and where 
we have replaced  jq with the binary logarithm lg of  jq .  

In the language of computer architects, Algorithm A H-Route  
implements a distance-vector protocol. Its per-node space 
O (d 2

 j lg j ) is considerably more economical than that of 
legacy protocols of the path-state variety. In effect, the latter 
tabulate the cost of every path to every destination, at every 
routing node (cf. matrix H in Sec II.A of [Wang et al 2005]). 
However, the combinatorially explosive nature of path-state 
routing impedes the scalability of MANETs ([LaForge et al 
2006] Sec. 2.4). Even in the sparse, 4-connected Cj 

2, for 
example, the number of path states from any node to any 
other is at least j 

2
 (2 

j + 2 – 8); i.e., super-exponential in the 
square root of the total number of nodes in the network. 
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If the graph of a network is not Hamming then we shouldn't 
try to use Algorithm A H-Route . However, if it is metrized on 
distance | ·, · | ∆  then we can apply general geodesic 
Algorithm A ∆-Route : forward a packet to a neighbor whose 
label minimizes the | ·, · | ∆  distance to the destination. This, 
in turn, underscores the practical importance of expanding 
our menu of distances, along with operational results (e.g., 
Table 4, Figure 4, Theorem 8) about graphs so-metrized. 

For example, while the geodesic routing algorithm presented 
in [Avis 1978] is restricted to binary labels, and without 
explicit appeal to dimension or extent minimality, it reaches 
beyond this paper by considering weighted Hamming 
graphs. Set the qth bit of the Hamming indicator of labels x 
and y (of identical length) if and only if x and y differ in the 
qth digit. The µ-Hamming distance | x, y | µ-H is the inner 
product of this Hamming indicator with vector  µ, 
comprising positive reciprocal-integer weights. Graph G is 
µ-Hamming-labeled if the edge distance between every two 
vertices equals the µ-Hamming distance between the 
respective labels. G is µ-Hamming if it can be µ-Hamming-
labeled; G is Hamming if it is µ-Hamming for some µ. 

Although this paper focuses on the unweighted case µ = 1, 
there are most certainly graphs that are Hamming only when 
µ  ≠ 1. E.g., while odd cycles C2q + 1 (other than triangles) 
are not 1-Hamming  (Table 4.k), [Avis 1978] shows how to 
Hamming-label them with weight ½ on each of 2q + 1 bits. 
However, we are left wondering whether 2q + 1 is the 
minimum Hamming dimension. Or, for that matter, whether 
Figure 13's six-bit ½-Hamming-labeling of the Petersen 
graph is the shortest. What is clear is that the minimum 
Hamming dimension for µ = 1 is minimum over all weights. 
In this sense the nonzero results of Table 6 are best possible. 

For illustration: a) Theorem 2.3 of [Avis 1978] uses q + 1 
bits to Hamming-label any even cycle C2q, such that two of 
the weights equal ½, and the remaining q – 1 weights equal 
one. However, C2q has minimum dimension q and extent-
minimum radix two (Table 4.l, Theorem 1). Therefore, q is 
the minimum Hamming dimension of C2q, over all weights, 
and [Avis 1978] exceeds this minimum by just one. 
b) [Avis 1978] uses n bits and uniform weight ½ to 
Hamming-label any n-vertex clique K n . However, K n is the 
one-dimensional unweighted n-ary Hamming ideal, hence 
has minimum dimension 1 and extent-minimum radix n (cf. 
Section 1.2). Even after translating the digits of L n to binary, 
the ⎡ lg n ⎤  bits to represent a minimum-dimension 
unweighted Hamming-labeling of K n compare favorably to 
the n bits it takes to ½-Hamming-label K n . By focusing on 
the unweighted case, our lexicographically parsimonious 
approach – starting with mixed mesh radices, and 
emphasizing dimension and extent minimality – yields fresh 
contributions to what we know about Hamming graphs. 
(Cf. research avenue, Table 8.f.) 

We therefore suggest that it would be profitable to 
thoroughly survey and integrate legacy developments about 
Hamming graphs (including weighted Hamming graphs) 
with those of Table 4, Table 6, and Table 7. Beyond our 
nascent sampling here, such a compilation might well 
commence with references cited in [Avis 1978] (or the less 
complete but more accessible [Avis 1981]). Many results 
therein have been independently rediscovered, and will quite 
possibly be rediscovered again, often with new insights. For 
example, [Kelly 1975] establishes that trees, cliques, and 
cycles are Hamming. [Avis 1978] gives independent proofs 
of these facts, in the context of rays defined by distances 
between points in the Euclidean plane. We learned of these 
works after proving essentially the same things, more-or-less 
directly, from first combinatorial principles [LaForge 2004]. 

As a second example of how rediscovery can lead to new 
insights, our theorem that the hyperfactorized primality of a 
Hamming graph equals its minimum dimension (Table 4.d) 
complements [Graham and Pollack 1971]'s algebraic bound: 
the dimension is at least the number of eigenvalues, with 
given sign, of the underlying distance matrix. 

As a third example of rediscovery, the generalized geodesic 
routing Algorithm A ∆-Route set forth in this section amounts 
to a contemporary twist on solutions to the Loop-switching 
Problem of [Graham and Pollack 1971], [Brandenburg et al 
1972], and [Pierce 1972]. Algorithm A H-Route , introduced in 
[LaForge 2004] and analyzed in this section, is effectively 
that espoused nearly three decades prior by [Avis 1978]. 

Cross-layer optimization of wireless MANETs reinforces 
the benefit of (re)discoveries, such as those highlighted in 
this section and in Section 3.1. Imagine mobile sensor nodes 
whose mission calls for cooperation, hence robust 
communication. To this end, each node possesses a software 
defined radio (SDR) into which we embed algorithms for 
multivariately optimizing fault tolerance, throughput, 
latency, and power ([LaForge 2004 MANETs], [LaForge et 
al 2006], [Wang et al 2005]). SDRs tune the number of 
channels (i.e., the vertex degree in the underlying graph) to 
match mission objectives and constraints. This is similar to 
self-tuning packaged multi-computers, interconnected with 
free-space optics, and described at the end of Section 3.1. 

Notwithstanding important details, such as radio 
interference, MANETs can (and should) tune their anatomy 
by self-configuring as graphs which degrade gracefully (41), 
or which maximize the ratio of connectivity to vertex 
degree. To enhance MANET physiology, SDRs embedded 
in nodes can assign metrized labelings that enable efficient 
distance-vector packet routing. For cross-layer optimization, 
we seek both: i.e., families of graphs, like { K j 

d }, which are 
anatomically optimum, and which are metrized to maximize 
the physiological routing benefit of the underlying anatomy. 
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Which brings us back to trees. Spanning trees, in particular, 
provide us with a fall-back when communication anatomy 
lacks network-wide metrization. We can compensate with a 
separate table of Hamming labels at each of n sensor nodes, 
one for each source x. Embedded Algorithm A Tree-Route  
forwards a packet to a neighbor that minimizes the 
remaining Hamming distance from x to the destination, 
within an Ore tree rooted at x, and Hamming-labeled on the 
fewest bits n – 1. Assuming that each bit exacts constant 
cost, the O ( n 2

 ) per-node space of such tree-based routing 
remains favorable when compared to path-state alternatives. 

We can modify Algorithm A Tree-Route  to economize on 
electricity. Let w ( q, r ) be the least power to maintain a 
bidirectional channel between nodes q and r, subject to 
minimum average bit delay. A spanning tree which 
minimizes the sum of such w's minimizes the overall power 
× delay of any graph that connects all n sensors ([Corman et 
al 1993] Chap. 24). Our MANET may have channels other 
than those corresponding to the edges of this minimum 
power × delay tree, but our overarching preference is to 
route traffic within the tree. Since the only labels we need to 
store at any node are those of its neighbors in this tree, we 
shave a Θ( n ) factor from the space cost of the Ore-tree 
version of Algorithm A Tree-Route , described above. 

In light of variants on geodesic routing Algorithm A Tree-Route , 
cross-layer optimization is not likely to be severely hindered 
by a lack of network-wide metrization. To mitigate such 
physiological deficiencies in practice, we can Hamming-
route packets within spanning trees. And, as we now 
know (26), the number of trees of order n, Hamming-labeled 
with minimum dimension n – 1, equals 2 

n – 1
 n 

n – 3. 

3.3 From Hamming Algorithms to Combinatorics 

Application-oriented algorithms such as A H-Route  owe their 
lineage to the seminal error detection and correction scheme 
of [Hamming 1950], now a textbook standard 
([MacWilliams and Sloane 1998] Sec. 1.7; [Wakerly 1994] 
Sec. 2.15.3). From a theoretical standpoint, we are interested 
in algorithms that are about Hamming labelings. 

For example, [Avis 1978] casts the problem of deciding 
whether an n-vertex graph is Hamming as a ½ ( n 2 – n) × 
(2 

n – 1 – 1) linear program. Alas, even dynamic column-
generation appears to fall short of guaranteeing pruned 
inputs whose size is sub-exponential in n. Other Hamming-
labeling algorithms can be traced through [Aurenhammer 
and Hagauer 1995], as well as references cited therein. If 
computing the Hamming distance takes constant time per 
(unweighted) digit, and d is the minimum dimension, then 
the O ( d ⋅ max [ | E |, n ( j – 1)] ) running time of A Label-Hamming , 
illustrated by Figures 4 and 8, is optimal whenever the input 
is Hamming, | E | ∈ Θ( n ), and the cube radix j is Θ( 1 ). 

Polynomially effective for mixed (albeit unweighted) 
radices, A Label-Hamming is evidently the fastest Hamming-
labeling algorithm so far. With exceptions as noted in the 
preceding paragraph, however, there remains a open gap 
with respect to lower bounds on problem complexity 
(cf. open problem, Table 8.g). This gap is especially striking 
with the O ( n | E | ) running time of A Label-Hamming , when its 
input is not Hamming (Sec. 2.5 of [LaForge et al 2006]). 

We conclude with an example of how improving one kind of 
Hamming-labeling algorithm could benefit another. Suppose 
we want to decide whether an unweighted labeling λ of an n-
vertex graph G is Hamming (thus n = | λ | ). In time 
Θ( | λ | + | E | ) first determine if G is connected; if not, it 
cannot be Hamming. Otherwise, | E | ≥ | λ | – 1, and a 
straightforward way to accomplish our task is to compute, in 
time O ( | λ | ⋅ | E | ), the all-distance matrix of G ([Corman et al 
1993] Chap. 26). For each pair of vertices, compare the 
Hamming distance between their labels with their edge 
distance, in overall time O ( d ⋅ | λ | 

2 ), where d is number of 
digits in λ, and where computing the Hamming distance 
takes constant time per digit. Output "yes" if and only if the 
two distances are equal, for all vertex pairs. This is 
essentially Algorithm A Check-Hamming  presented in [LaForge 
2004], and is currently implemented by the Connection 
Foundry software shown in Figures 4, 8, and 13. 

Recalling the next-to-last paragraph of Section 1.2, 
Algorithm A Construct-Hamming  decides if a set λ of labels is 
Hamming graphic. The run-time dominant portion of 
A Construct-Hamming  constructs the (unique) Gray-code-transitive 
components induced by λ; the less costly portion determines 
if there is one just one component. Focusing on the former, 
suppose that we could close the Θ( | λ | ) gap between our 
Ω ( d ⋅ | λ | 

 ) lower bound on problem complexity and the 
O ( d ⋅ | λ | 

2 ) algorithmic running time (cf. open problem, 
Table 8.h). For example, suppose that we found a Θ( d ⋅ | λ | 

 ) 
running-time algorithm that constructs the graph induced by 
λ. This, in turn, would shave a Θ( | λ | ) factor from the 
running time of Algorithm A Check-Hamming , described above. 
Feed the labeling λ to the improved portion of A Construct-

Hamming  that constructs the graph induced by λ. Then check, 
in time Θ( | λ | + | E | ), whether the graph induced by λ equals 
the graph input to the improved version of A Check-Hamming . 

Pursuing a combinatorial perspective often sheds light on 
metrized graphs in general (e.g., Table 8.i), Hamming 
graphs in particular. With respect to the µ-Hamming graphs 
of Section 3.2, for example, how many of them are there, as 
a function of the order n, minimum dimension d, extent-
minimum radix j , and (Table 8.j) suitably maximized weight 
vector µ? As a step in this direction, how many n-vertex 
trees are there, Hamming-labeled with minimum dimension 
n – 1, and necessarily with minimum radix 2 and maximum 
weight 1? The answer, as we now know (26), is 2 

n – 1
 n 

n – 3. 
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